* refactor(prometheus.py): refactor to remove `_tag` metrics and incorporate in regular metrics
* fix(prometheus.py): handle label values not set in enum values
* feat(prometheus.py): working e2e custom metadata labels
* docs(prometheus.md): update docs to clarify how custom metrics would work
* test(test_prometheus_unit_tests.py): fix test
* test: add unit testing
* fix(prometheus.py): refactor litellm_input_tokens_metric to use label factory
makes adding new metrics easier
* feat(prometheus.py): add 'request_model' to 'litellm_input_tokens_metric'
* refactor(prometheus.py): refactor 'litellm_output_tokens_metric' to use label factory
makes adding new metrics easier
* feat(prometheus.py): emit requested model in 'litellm_output_tokens_metric'
* feat(prometheus.py): support tracking success events with custom metrics
* refactor(prometheus.py): refactor '_set_latency_metrics' to just use the initially created enum values dictionary
reduces scope for missing values
* feat(prometheus.py): refactor all tags to support custom metadata tags
enables metadata tags to be used across for e2e tracking
* fix(prometheus.py): fix requested model on success event enum_values
* test: fix test
* test: fix test
* test: handle filenotfound error
* docs(prometheus.md): add new values to prometheus
* docs(prometheus.md): document adding custom metrics on prometheus
* bump: version 1.56.5 → 1.56.6
* docs(sidebar.js): docs for support model access groups for wildcard routes
* feat(key_management_endpoints.py): add check if user is premium_user when adding model access group for wildcard route
* refactor(docs/): make control model access a root-level doc in proxy sidebar
easier to discover how to control model access on litellm
* docs: more cleanup
* feat(fireworks_ai/): add document inlining support
Enables user to call non-vision models with images/pdfs/etc.
* test(test_fireworks_ai_translation.py): add unit testing for fireworks ai transform inline helper util
* docs(docs/): add document inlining details to fireworks ai docs
* feat(fireworks_ai/): allow user to dynamically disable auto add transform inline
allows client-side disabling of this feature for proxy users
* feat(fireworks_ai/): return 'supports_vision' and 'supports_pdf_input' true on all fireworks ai models
now true as fireworks ai supports document inlining
* test: fix tests
* fix(router.py): add unit testing for _is_model_access_group_for_wildcard_route
* feat(deepgram/): initial e2e support for deepgram stt
Uses deepgram's `/listen` endpoint to transcribe speech to text
Closes https://github.com/BerriAI/litellm/issues/4875
* fix: fix linting errors
* test: fix test
* test: add new test image embedding to base llm unit tests
Addresses https://github.com/BerriAI/litellm/issues/6515
* fix(bedrock/embed/multimodal-embeddings): strip data prefix from image urls for bedrock multimodal embeddings
Fix https://github.com/BerriAI/litellm/issues/6515
* feat: initial commit for fireworks ai audio transcription support
Relevant issue: https://github.com/BerriAI/litellm/issues/7134
* test: initial fireworks ai test
* feat(fireworks_ai/): implemented fireworks ai audio transcription config
* fix(utils.py): register fireworks ai audio transcription config, in config manager
* fix(utils.py): add fireworks ai param translation to 'get_optional_params_transcription'
* refactor(fireworks_ai/): define text completion route with model name handling
moves model name handling to specific fireworks routes, as required by their api
* refactor(fireworks_ai/chat): define transform_Request - allows fixing model if accounts/ is missing
* fix: fix linting errors
* fix: fix linting errors
* fix: fix linting errors
* fix: fix linting errors
* fix(handler.py): fix linting errors
* fix(main.py): fix tgai text completion route
* refactor(together_ai/completion): refactors together ai text completion route to just use provider transform request
* refactor: move test_fine_tuning_api out of local_testing
reduces local testing ci/cd time
* build(model_prices_and_context_window.json): add gemini-1.5-flash context caching
* fix(context_caching/transformation.py): just use last identified cache point
Fixes https://github.com/BerriAI/litellm/issues/6738
* fix(context_caching/transformation.py): pick first contiguous block - handles system message error from google
Fixes https://github.com/BerriAI/litellm/issues/6738
* fix(vertex_ai/gemini/): track context caching tokens
* refactor(gemini/): place transformation.py inside `chat/` folder
make it easy for user to know we support the equivalent endpoint
* fix: fix import
* refactor(vertex_ai/): move vertex_ai cost calc inside vertex_ai/ folder
make it easier to see cost calculation logic
* fix: fix linting errors
* fix: fix circular import
* feat(gemini/cost_calculator.py): support gemini context caching cost calculation
generifies anthropic's cost calculation function and uses it across anthropic + gemini
* build(model_prices_and_context_window.json): add cost tracking for gemini-1.5-flash-002 w/ context caching
Closes https://github.com/BerriAI/litellm/issues/6891
* docs(gemini.md): add gemini context caching architecture diagram
make it easier for user to understand how context caching works
* docs(gemini.md): link to relevant gemini context caching code
* docs(gemini/context_caching): add readme in github, make it easy for dev to know context caching is supported + where to go for code
* fix(llm_cost_calc/utils.py): handle gemini 128k token diff cost calc scenario
* fix(deepseek/cost_calculator.py): support deepseek context caching cost calculation
* test: fix test
* ui fix - allow searching model list + fix bug on filtering
* qa fix - use correct provider name for azure_text
* ui wrap content onto next line
* ui fix - allow selecting current UI session when logging in
* ui session budgets
* fix(hosted_vllm/transformation.py): return fake api key, if none give. Prevents httpx error
Fixes https://github.com/BerriAI/litellm/issues/7291
* test: fix test
* fix(main.py): add hosted_vllm/ support for embeddings endpoint
Closes https://github.com/BerriAI/litellm/issues/7290
* docs(vllm.md): add docs on vllm embeddings usage
* fix(__init__.py): fix sambanova model test
* fix(base_llm_unit_tests.py): skip pydantic obj test if model takes >5s to respond
* fix(azure/): support passing headers to azure openai endpoints
Fixes https://github.com/BerriAI/litellm/issues/6217
* fix(utils.py): move default tokenizer to just openai
hf tokenizer makes network calls when trying to get the tokenizer - this slows down execution time calls
* fix(router.py): fix pattern matching router - add generic "*" to it as well
Fixes issue where generic "*" model access group wouldn't show up
* fix(pattern_match_deployments.py): match to more specific pattern
match to more specific pattern
allows setting generic wildcard model access group and excluding specific models more easily
* fix(proxy_server.py): fix _delete_deployment to handle base case where db_model list is empty
don't delete all router models b/c of empty list
Fixes https://github.com/BerriAI/litellm/issues/7196
* fix(anthropic/): fix handling response_format for anthropic messages with anthropic api
* fix(fireworks_ai/): support passing response_format + tool call in same message
Addresses https://github.com/BerriAI/litellm/issues/7135
* Revert "fix(fireworks_ai/): support passing response_format + tool call in same message"
This reverts commit 6a30dc6929.
* test: fix test
* fix(replicate/): fix replicate default retry/polling logic
* test: add unit testing for router pattern matching
* test: update test to use default oai tokenizer
* test: mark flaky test
* test: skip flaky test
* fix(acompletion): support fallbacks on acompletion
allows health checks for wildcard routes to use fallback models
* test: update cohere generate api testing
* add max tokens to health check (#7000)
* fix: fix health check test
* test: update testing
---------
Co-authored-by: Cameron <561860+wallies@users.noreply.github.com>
* refactor(fireworks_ai/): inherit from openai like base config
refactors fireworks ai to use a common config
* test: fix import in test
* refactor(watsonx/): refactor watsonx to use llm base config
refactors chat + completion routes to base config path
* fix: fix linting error
* refactor: inherit base llm config for oai compatible routes
* test: fix test
* test: fix test
* refactor(fireworks_ai/): inherit from openai like base config
refactors fireworks ai to use a common config
* test: fix import in test
* refactor(watsonx/): refactor watsonx to use llm base config
refactors chat + completion routes to base config path
* fix: fix linting error
* test: fix test
* fix: fix test
* feat(base_llm): initial commit for common base config class
Addresses code qa critique https://github.com/andrewyng/aisuite/issues/113#issuecomment-2512369132
* feat(base_llm/): add transform request/response abstract methods to base config class
* feat(cohere-+-clarifai): refactor integrations to use common base config class
* fix: fix linting errors
* refactor(anthropic/): move anthropic + vertex anthropic to use base config
* test: fix xai test
* test: fix tests
* fix: fix linting errors
* test: comment out WIP test
* fix(transformation.py): fix is pdf used check
* fix: fix linting error
* fix(main.py): support passing max retries to azure/openai embedding integrations
Fixes https://github.com/BerriAI/litellm/issues/7003
* feat(team_endpoints.py): allow updating team model aliases
Closes https://github.com/BerriAI/litellm/issues/6956
* feat(router.py): allow specifying model id as fallback - skips any cooldown check
Allows a default model to be checked if all models in cooldown
s/o @micahjsmith
* docs(reliability.md): add fallback to specific model to docs
* fix(utils.py): new 'is_prompt_caching_valid_prompt' helper util
Allows user to identify if messages/tools have prompt caching
Related issue: https://github.com/BerriAI/litellm/issues/6784
* feat(router.py): store model id for prompt caching valid prompt
Allows routing to that model id on subsequent requests
* fix(router.py): only cache if prompt is valid prompt caching prompt
prevents storing unnecessary items in cache
* feat(router.py): support routing prompt caching enabled models to previous deployments
Closes https://github.com/BerriAI/litellm/issues/6784
* test: fix linting errors
* feat(databricks/): convert basemodel to dict and exclude none values
allow passing pydantic message to databricks
* fix(utils.py): ensure all chat completion messages are dict
* (feat) Track `custom_llm_provider` in LiteLLMSpendLogs (#7081)
* add custom_llm_provider to SpendLogsPayload
* add custom_llm_provider to SpendLogs
* add custom llm provider to SpendLogs payload
* test_spend_logs_payload
* Add MLflow to the side bar (#7031)
Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
* (bug fix) SpendLogs update DB catch all possible DB errors for retrying (#7082)
* catch DB_CONNECTION_ERROR_TYPES
* fix DB retry mechanism for SpendLog updates
* use DB_CONNECTION_ERROR_TYPES in auth checks
* fix exp back off for writing SpendLogs
* use _raise_failed_update_spend_exception to ensure errors print as NON blocking
* test_update_spend_logs_multiple_batches_with_failure
* (Feat) Add StructuredOutputs support for Fireworks.AI (#7085)
* fix model cost map fireworks ai "supports_response_schema": true,
* fix supports_response_schema
* fix map openai params fireworks ai
* test_map_response_format
* test_map_response_format
* added deepinfra/Meta-Llama-3.1-405B-Instruct (#7084)
* bump: version 1.53.9 → 1.54.0
* fix deepinfra
* litellm db fixes LiteLLM_UserTable (#7089)
* ci/cd queue new release
* fix llama-3.3-70b-versatile
* refactor - use consistent file naming convention `AI21/` -> `ai21` (#7090)
* fix refactor - use consistent file naming convention
* ci/cd run again
* fix naming structure
* fix use consistent naming (#7092)
---------
Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Yuki Watanabe <31463517+B-Step62@users.noreply.github.com>
Co-authored-by: ali sayyah <ali.sayyah2@gmail.com>