Commit graph

432 commits

Author SHA1 Message Date
Ishaan Jaff
b6d1ab6152 test_completion_mistral_api_mistral_large_function_call 2025-01-16 22:27:48 -08:00
Ishaan Jaff
2177bdc836 (datadog llm observability) - fixes + improvements for using datadog llm observability logging integration (#7824)
* dd llm obs fixes

* _ensure_string_content

* fix _get_dd_llm_obs_payload_metadata
2025-01-16 22:02:24 -08:00
Krish Dholakia
000d3152a8 Litellm dev 01 14 2025 p1 (#7771)
* First-class Aim Guardrails support (#7738)

* initial aim support

* add tests

* docs(langsmith_integration.md): cleanup

* style: cleanup unused imports

---------

Co-authored-by: Tomer Bin <117278227+hxtomer@users.noreply.github.com>
2025-01-14 16:18:21 -08:00
Krish Dholakia
8ee79dd5d9 [BETA] Add OpenAI /images/variations + Topaz API support (#7700)
* feat(main.py): initial commit for `/image/variations` endpoint support

* refactor(base_llm/): introduce new base llm base config for image variation endpoints

* refactor(openai/image_variations/transformation.py): implement openai image variation transformation handler

* fix: test

* feat(openai/): working openai `/image/variation` endpoint calls via sdk

* feat(topaz/): topaz sync image variation call support

Addresses https://github.com/BerriAI/litellm/issues/7593

'

* fix(topaz/transformation.py): fix linting errors

* fix(openai/image_variations/handler.py): fix passing json data

* fix(main.py): image_variation/

support async image variation route - `aimage_variation`

* fix(test_get_model_info.py): fix test

* fix: cleanup unused imports

* feat(openai/): add async `/image/variations` endpoint support

* feat(topaz/): support async `/image/variations` calls

* fix: test

* fix(utils.py): fix get_model_info_helper for no model info w/ provider config

handles situation where model info is not known but provider config exists

* test(test_router_fallbacks.py): mark flaky test

* fix: fix unused imports

* test: bump otel load test perf threshold - accounts for current load tests hitting same server
2025-01-11 23:27:46 -08:00
Krish Dholakia
953c021aa7 Litellm dev 01 10 2025 p3 (#7682)
* feat(langfuse.py): log the used prompt when prompt management used

* test: fix test

* docs(self_serve.md): add doc on restricting personal key creation on ui

* feat(s3.py): support s3 logging with team alias prefixes (if available)

New preview feature

* fix(main.py): remove old if block - simplify to just await if coroutine returned

fixes lm_studio async embedding error

* fix(langfuse.py): handle get prompt check
2025-01-10 21:56:42 -08:00
Ishaan Jaff
9e2b1101c0 (litellm sdk - perf improvement) - use O(1) set lookups for checking llm providers / models (#7672)
* fix get model info logic to use O(1) lookups

* perf - use O(1) lookup for get llm provider
2025-01-10 14:16:30 -08:00
Krish Dholakia
75c3ddfc9e fix(vertex_ai/gemini/transformation.py): handle 'http://' in gemini p… (#7660)
* fix(vertex_ai/gemini/transformation.py): handle 'http://' in gemini process url

* refactor(router.py): refactor '_prompt_management_factory' to use logging obj get_chat_completion logic

deduplicates code

* fix(litellm_logging.py): update 'get_chat_completion_prompt' to update logging object messages

* docs(prompt_management.md): update prompt management to be in beta

given feedback - this still needs to be revised (e.g. passing in user message, not ignoring)

* refactor(prompt_management_base.py): introduce base class for prompt management

allows consistent behaviour across prompt management integrations

* feat(prompt_management_base.py): support adding client message to template message + refactor langfuse prompt management to use prompt management base

* fix(litellm_logging.py): log prompt id + prompt variables to langfuse if set

allows tracking what prompt was used for what purpose

* feat(litellm_logging.py): log prompt management metadata in standard logging payload + use in langfuse

allows logging prompt id / prompt variables to langfuse

* test: fix test

* fix(router.py): cleanup unused imports

* fix: fix linting error

* fix: fix trace param typing

* fix: fix linting errors

* fix: fix code qa check
2025-01-10 07:31:59 -08:00
Krish Dholakia
6d8cfeaf14 LiteLLM Minor Fixes & Improvements (01/08/2025) - p2 (#7643)
* fix(streaming_chunk_builder_utils.py): add test for groq tool calling + streaming + combine chunks

Addresses https://github.com/BerriAI/litellm/issues/7621

* fix(streaming_utils.py): fix modelresponseiterator for openai like chunk parser

ensures chunk parser uses the correct tool call id when translating the chunk

 Fixes https://github.com/BerriAI/litellm/issues/7621

* build(model_hub.tsx): display cost pricing on model hub

* build(model_hub.tsx): show cost per token pricing + complete model information

* fix(types/utils.py): fix usage object handling
2025-01-08 19:45:19 -08:00
Ishaan Jaff
81d1826c25 [Feature]: - allow print alert log to console (#7534)
* update send_to_webhook

* test_print_alerting_payload_warning

* add alerting_args spec

* test_alerting.py
2025-01-03 17:48:13 -08:00
Krish Dholakia
796913fb30 Fix langfuse prompt management on proxy (#7535)
* fix(types/utils.py): support langfuse + humanloop routes on llm router

* fix(main.py): remove acompletion elif block

just await if coroutine returned
2025-01-03 12:42:37 -08:00
Ishaan Jaff
3a454ee2ce (perf) use aiohttp for custom_openai (#7514)
* use aiohttp handler

* BaseLLMAIOHTTPHandler

* use CustomOpenAIChatConfig

* CustomOpenAIChatConfig

* CustomOpenAIChatConfig

* fix linting

* AiohttpOpenAIChatConfig

* fix order

* aiohttp_openai
2025-01-02 22:15:17 -08:00
Krish Dholakia
02ff7b0a8a Litellm dev 01 01 2025 p1 (#7498)
* refactor(prometheus.py): refactor to remove `_tag` metrics and incorporate in regular metrics

* fix(prometheus.py): handle label values not set in enum values

* feat(prometheus.py): working e2e custom metadata labels

* docs(prometheus.md): update docs to clarify how custom metrics would work

* test(test_prometheus_unit_tests.py): fix test

* test: add unit testing
2025-01-01 18:59:28 -08:00
Krish Dholakia
b0f570ee16 Litellm dev 12 30 2024 p2 (#7495)
* test(azure_openai_o1.py): initial commit with testing for azure openai o1 preview model

* fix(base_llm_unit_tests.py): handle azure o1 preview response format tests

skip as o1 on azure doesn't support tool calling yet

* fix: initial commit of azure o1 handler using openai caller

simplifies calling + allows fake streaming logic alr. implemented for openai to just work

* feat(azure/o1_handler.py): fake o1 streaming for azure o1 models

azure does not currently support streaming for o1

* feat(o1_transformation.py): support overriding 'should_fake_stream' on azure/o1 via 'supports_native_streaming' param on model info

enables user to toggle on when azure allows o1 streaming without needing to bump versions

* style(router.py): remove 'give feedback/get help' messaging when router is used

Prevents noisy messaging

Closes https://github.com/BerriAI/litellm/issues/5942

* fix(types/utils.py): handle none logprobs

Fixes https://github.com/BerriAI/litellm/issues/328

* fix(exception_mapping_utils.py): fix error str unbound error

* refactor(azure_ai/): move to openai_like chat completion handler

allows for easy swapping of api base url's (e.g. ai.services.com)

Fixes https://github.com/BerriAI/litellm/issues/7275

* refactor(azure_ai/): move to base llm http handler

* fix(azure_ai/): handle differing api endpoints

* fix(azure_ai/): make sure all unit tests are passing

* fix: fix linting errors

* fix: fix linting errors

* fix: fix linting error

* fix: fix linting errors

* fix(azure_ai/transformation.py): handle extra body param

* fix(azure_ai/transformation.py): fix max retries param handling

* fix: fix test

* test(test_azure_o1.py): fix test

* fix(llm_http_handler.py): support handling azure ai unprocessable entity error

* fix(llm_http_handler.py): handle sync invalid param error for azure ai

* fix(azure_ai/): streaming support with base_llm_http_handler

* fix(llm_http_handler.py): working sync stream calls with unprocessable entity handling for azure ai

* fix: fix linting errors

* fix(llm_http_handler.py): fix linting error

* fix(azure_ai/): handle cohere tool call invalid index param error
2025-01-01 18:57:29 -08:00
Ishaan Jaff
0cbecbe185 (Feat) - LiteLLM Use UsernamePasswordCredential for Azure OpenAI (#7496)
* add get_azure_ad_token_from_username_password

* docs azure use username / password for auth

* update doc

* get_azure_ad_token_from_username_password

* test test_get_azure_ad_token_from_username_password
2025-01-01 14:11:27 -08:00
Ishaan Jaff
0b4d529af8 (feat) POST /fine_tuning/jobs support passing vertex specific hyper params (#7490)
* update convert_openai_request_to_vertex

* test_create_vertex_fine_tune_jobs_mocked

* fix order of methods

* update LiteLLMFineTuningJobCreate

* update OpenAIFineTuningHyperparameters

* update vertex hyper params in response

* _transform_openai_hyperparameters_to_vertex_hyperparameters

* supervised_tuning_spec["hyperParameters"] fix

* fix mapping for ft params testing

* docs fine tuning apis

* fix test_convert_basic_openai_request_to_vertex_request

* update hyperparams for create fine tuning

* fix linting

* test_create_vertex_fine_tune_jobs_mocked_with_hyperparameters

* run ci/cd again

* test_convert_basic_openai_request_to_vertex_request
2025-01-01 07:44:48 -08:00
Krish Dholakia
c46c1e6ea0 Prometheus - custom metrics support + other improvements (#7489)
* fix(prometheus.py): refactor litellm_input_tokens_metric to use label factory

makes adding new metrics easier

* feat(prometheus.py): add 'request_model' to 'litellm_input_tokens_metric'

* refactor(prometheus.py): refactor 'litellm_output_tokens_metric' to use label factory

makes adding new metrics easier

* feat(prometheus.py): emit requested model in 'litellm_output_tokens_metric'

* feat(prometheus.py): support tracking success events with custom metrics

* refactor(prometheus.py): refactor '_set_latency_metrics' to just use the initially created enum values dictionary

reduces scope for missing values

* feat(prometheus.py): refactor all tags to support custom metadata tags

enables metadata tags to be used across for e2e tracking

* fix(prometheus.py): fix requested model on success event enum_values

* test: fix test

* test: fix test

* test: handle filenotfound error

* docs(prometheus.md): add new values to prometheus

* docs(prometheus.md): document adding custom metrics on prometheus

* bump: version 1.56.5 → 1.56.6
2025-01-01 07:41:50 -08:00
Ishaan Jaff
a39cac313c (Feat) - Add PagerDuty Alerting Integration (#7478)
* define basic types

* fix verbose_logger.exception statement

* fix basic alerting

* test pager duty alerting

* test_pagerduty_alerting_high_failure_rate

* PagerDutyAlerting

* async_log_failure_event

* use pre_call_hook

* add _request_is_completed helper util

* update AlertingConfig

* rename PagerDutyInternalEvent

* _send_alert_if_thresholds_crossed

* use pagerduty as _custom_logger_compatible_callbacks_literal

* fix slack alerting imports

* fix imports in slack alerting

* PagerDutyAlerting

* fix _load_alerting_settings

* test_pagerduty_hanging_request_alerting

* working pager duty alerting

* fix linting

* doc pager duty alerting

* update hanging_response_handler

* fix import location

* update failure_threshold

* update async_pre_call_hook

* docs pagerduty

* test - callback_class_str_to_classType

* fix linting errors

* fix linting + testing error

* PagerDutyAlerting

* test_pagerduty_hanging_request_alerting

* fix unused imports

* docs pager duty

* @pytest.mark.flaky(retries=6, delay=2)

* test_model_info_bedrock_converse_enforcement
2025-01-01 07:12:51 -08:00
Krish Dholakia
03fa654b97 Litellm dev 12 31 2024 p1 (#7488)
* fix(internal_user_endpoints.py): fix team list sort - handle team_alias being set + None

* fix(key_management_endpoints.py): allow team admin to create key for member via admin ui

Fixes https://github.com/BerriAI/litellm/issues/7482

* fix(proxy_server.py): allow querying info on specific model group via `/model_group/info`

allows client-side user to get model info from proxy

* fix(proxy_server.py): add docstring on `/model_group/info` showing how to filter by model name

* test(test_proxy_utils.py): add unit test for returning model group info filtered

* fix(proxy_server.py): fix query param

* fix(test_Get_model_info.py): handle no whitelisted bedrock modells
2024-12-31 23:21:51 -08:00
Krish Dholakia
39a11ad272 Fix team-based logging to langfuse + allow custom tokenizer on /token_counter endpoint (#7493)
* fix(langfuse_prompt_management.py): migrate dynamic logging to langfuse custom logger compatible class

* fix(langfuse_prompt_management.py): support failure callback logging to langfuse as well

* feat(proxy_server.py): support setting custom tokenizer on config.yaml

Allows customizing value for `/utils/token_counter`

* fix(proxy_server.py): fix linting errors

* test: skip if file not found

* style: cleanup unused import

* docs(configs.md): add docs on setting custom tokenizer
2024-12-31 23:18:41 -08:00
Krish Dholakia
77c13df55d HumanLoop integration for Prompt Management (#7479)
* feat(humanloop.py): initial commit for humanloop prompt management integration

Closes https://github.com/BerriAI/litellm/issues/213

* feat(humanloop.py): working e2e humanloop prompt management integration

Closes https://github.com/BerriAI/litellm/issues/213

* fix(humanloop.py): fix linting errors

* fix: fix linting erro

* fix: fix test

* test: handle filenotfound error
2024-12-30 22:26:03 -08:00
Krish Dholakia
0178e75cd9 Litellm dev 12 30 2024 p1 (#7480)
* test(azure_openai_o1.py): initial commit with testing for azure openai o1 preview model

* fix(base_llm_unit_tests.py): handle azure o1 preview response format tests

skip as o1 on azure doesn't support tool calling yet

* fix: initial commit of azure o1 handler using openai caller

simplifies calling + allows fake streaming logic alr. implemented for openai to just work

* feat(azure/o1_handler.py): fake o1 streaming for azure o1 models

azure does not currently support streaming for o1

* feat(o1_transformation.py): support overriding 'should_fake_stream' on azure/o1 via 'supports_native_streaming' param on model info

enables user to toggle on when azure allows o1 streaming without needing to bump versions

* style(router.py): remove 'give feedback/get help' messaging when router is used

Prevents noisy messaging

Closes https://github.com/BerriAI/litellm/issues/5942

* test: fix azure o1 test

* test: fix tests

* fix: fix test
2024-12-30 21:52:52 -08:00
Ishaan Jaff
eac201598b test_rerank_response_assertions (#7476) 2024-12-30 10:12:56 -08:00
Krish Dholakia
9150722a00 Litellm dev 12 28 2024 p2 (#7458)
* docs(sidebar.js): docs for support model access groups for wildcard routes

* feat(key_management_endpoints.py): add check if user is premium_user when adding model access group for wildcard route

* refactor(docs/): make control model access a root-level doc in proxy sidebar

easier to discover how to control model access on litellm

* docs: more cleanup

* feat(fireworks_ai/): add document inlining support

Enables user to call non-vision models with images/pdfs/etc.

* test(test_fireworks_ai_translation.py): add unit testing for fireworks ai transform inline helper util

* docs(docs/): add document inlining details to fireworks ai docs

* feat(fireworks_ai/): allow user to dynamically disable auto add transform inline

allows client-side disabling of this feature for proxy users

* feat(fireworks_ai/): return 'supports_vision' and 'supports_pdf_input' true on all fireworks ai models

now true as fireworks ai supports document inlining

* test: fix tests

* fix(router.py): add unit testing for _is_model_access_group_for_wildcard_route
2024-12-28 19:38:06 -08:00
Krish Dholakia
ebc28b1921 Litellm dev 12 28 2024 p3 (#7464)
* feat(deepgram/): initial e2e support for deepgram stt

Uses deepgram's `/listen` endpoint to transcribe speech to text

 Closes https://github.com/BerriAI/litellm/issues/4875

* fix: fix linting errors

* test: fix test
2024-12-28 19:18:58 -08:00
Ishaan Jaff
6ec5ed8b3c (Feat) Log Guardrails run, guardrail response on logging integrations (#7445)
* add guardrail_information to SLP

* use standard_logging_guardrail_information

* track StandardLoggingGuardrailInformation

* use log_guardrail_information

* use log_guardrail_information

* docs guardrails

* docs guardrails

* update quick start

* fix presidio logging for sync functions

* update Guardrail type

* enforce add_standard_logging_guardrail_information_to_request_data

* update gd docs
2024-12-27 15:01:56 -08:00
Ishaan Jaff
e65cc581b3 (feat) /guardrails/list show guardrail info params (#7442)
* add GuardrailInfoResponse

* add list_guardrails

* test_get_guardrails_list_response
2024-12-27 14:35:00 -08:00
Krish Dholakia
f30260343b Litellm dev 12 26 2024 p3 (#7434)
* build(model_prices_and_context_window.json): update groq models to specify 'supports_vision' parameter

Closes https://github.com/BerriAI/litellm/issues/7433

* docs(groq.md): add groq vision example to docs

Closes https://github.com/BerriAI/litellm/issues/7433

* fix(prometheus.py): refactor self.litellm_proxy_failed_requests_metric to use label factory

* feat(prometheus.py): new 'litellm_proxy_failed_requests_by_tag_metric'

allows tracking failed requests by tag on proxy

* fix(prometheus.py): fix exception logging

* feat(prometheus.py): add new 'litellm_request_total_latency_by_tag_metric'

enables tracking latency by use-case

* feat(prometheus.py): add new llm api latency by tag metric

* feat(prometheus.py): new litellm_deployment_latency_per_output_token_by_tag metric

allows tracking deployment latency by tag

* fix(prometheus.py): refactor 'litellm_requests_metric' to use enum values + label factory

* feat(prometheus.py): new litellm_proxy_total_requests_by_tag metric

allows tracking total requests by tag

* feat(prometheus.py): new metric litellm_deployment_successful_fallbacks_by_tag

allows tracking deployment fallbacks by tag

* fix(prometheus.py): new 'litellm_deployment_failed_fallbacks_by_tag' metric

allows tracking failed fallbacks on deployment by custom tag

* test: fix test

* test: rename test to run earlier

* test: skip flaky test
2024-12-26 21:21:16 -08:00
Krish Dholakia
d6a2beb342 Support budget/rate limit tiers for keys (#7429)
* feat(proxy/utils.py): get associated litellm budget from db in combined_view for key

allows user to create rate limit tiers and associate those to keys

* feat(proxy/_types.py): update the value of key-level tpm/rpm/model max budget metrics with the associated budget table values if set

allows rate limit tiers to be easily applied to keys

* docs(rate_limit_tiers.md): add doc on setting rate limit / budget tiers

make feature discoverable

* feat(key_management_endpoints.py): return litellm_budget_table value in key generate

make it easy for user to know associated budget on key creation

* fix(key_management_endpoints.py): document 'budget_id' param in `/key/generate`

* docs(key_management_endpoints.py): document budget_id usage

* refactor(budget_management_endpoints.py): refactor budget endpoints into separate file - makes it easier to run documentation testing against it

* docs(test_api_docs.py): add budget endpoints to ci/cd doc test + add missing param info to docs

* fix(customer_endpoints.py): use new pydantic obj name

* docs(user_management_heirarchy.md): add simple doc explaining teams/keys/org/users on litellm

* Litellm dev 12 26 2024 p2 (#7432)

* (Feat) Add logging for `POST v1/fine_tuning/jobs`  (#7426)

* init commit ft jobs logging

* add ft logging

* add logging for FineTuningJob

* simple FT Job create test

* (docs) - show all supported Azure OpenAI endpoints in overview  (#7428)

* azure batches

* update doc

* docs azure endpoints

* docs endpoints on azure

* docs azure batches api

* docs azure batches api

* fix(key_management_endpoints.py): fix key update to actually work

* test(test_key_management.py): add e2e test asserting ui key update call works

* fix: proxy/_types - fix linting erros

* test: update test

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>

* fix: test

* fix(parallel_request_limiter.py): enforce tpm/rpm limits on key from tiers

* fix: fix linting errors

* test: fix test

* fix: remove unused import

* test: update test

* docs(customer_endpoints.py): document new model_max_budget param

* test: specify unique key alias

* docs(budget_management_endpoints.py): document new model_max_budget param

* test: fix test

* test: fix tests

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
2024-12-26 19:05:27 -08:00
Ishaan Jaff
aff0f974bc (Feat) Add logging for POST v1/fine_tuning/jobs (#7426)
* init commit ft jobs logging

* add ft logging

* add logging for FineTuningJob

* simple FT Job create test
2024-12-26 08:58:47 -08:00
Krish Dholakia
8567342bd4 Litellm dev 12 25 2024 p3 (#7421)
* refactor(prometheus.py): refactor to use a factory method for setting label values

allows for enforcing end user id disabling on prometheus e2e

* fix: fix linting error

* fix(prometheus.py): ensure label factory drops end-user value if disabled by user

* fix(prometheus.py): specify service_type in end user tracking get

* test: fix test

* test: add unit test for prometheus factory

* test: improve test (cover flag not set scenario)

* test(test_prometheus.py): e2e test covering if 'end_user_id' shows up in testing if disabled

scrapes the `/metrics` endpoint and scans text to check if id appears in emitted metrics

* fix(prometheus.py): stringify status code before logging it
2024-12-25 18:54:24 -08:00
Krish Dholakia
7af1f8a0c7 Litellm dev 12 25 2025 p2 (#7420)
* test: add new test image embedding to base llm unit tests

Addresses https://github.com/BerriAI/litellm/issues/6515

* fix(bedrock/embed/multimodal-embeddings): strip data prefix from image urls for bedrock multimodal embeddings

Fix https://github.com/BerriAI/litellm/issues/6515

* feat: initial commit for fireworks ai audio transcription support

Relevant issue: https://github.com/BerriAI/litellm/issues/7134

* test: initial fireworks ai test

* feat(fireworks_ai/): implemented fireworks ai audio transcription config

* fix(utils.py): register fireworks ai audio transcription config, in config manager

* fix(utils.py): add fireworks ai param translation to 'get_optional_params_transcription'

* refactor(fireworks_ai/): define text completion route with model name handling

moves model name handling to specific fireworks routes, as required by their api

* refactor(fireworks_ai/chat): define transform_Request - allows fixing model if accounts/ is missing

* fix: fix linting errors

* fix: fix linting errors

* fix: fix linting errors

* fix: fix linting errors

* fix(handler.py): fix linting errors

* fix(main.py): fix tgai text completion route

* refactor(together_ai/completion): refactors together ai text completion route to just use provider transform request

* refactor: move test_fine_tuning_api out of local_testing

reduces local testing ci/cd time
2024-12-25 18:35:34 -08:00
Ishaan Jaff
5612103ea3 (feat) Support Dynamic Params for guardrails (#7415)
* update CustomGuardrail

* unit test custom guardrails

* add dynamic params for aporia

* add dynamic params to bedrock guard

* add dynamic params for all guardrails

* fix linting

* fix should_run_guardrail

* _validate_premium_user

* update guardrail doc

* doc update

* update code q

* should_run_guardrail
2024-12-25 16:07:29 -08:00
Krish Dholakia
f929a1f309 Litellm dev 12 24 2024 p4 (#7407)
* fix(invoke_handler.py): fix mock response iterator to handle tool calling

returns tool call if returned by model response

* fix(prometheus.py): add new 'tokens_by_tag' metric on prometheus

allows tracking 'token usage' by task

* feat(prometheus.py): add input + output token tracking by tag

* feat(prometheus.py): add tag based deployment failure tracking

allows admin to track failure by use-case
2024-12-24 20:24:06 -08:00
Ishaan Jaff
e98f1d16fd (feat) /batches - track user_api_key_alias, user_api_key_team_alias etc for /batch requests (#7401)
* run azure testing on ci/cd

* update docs on azure batches endpoints

* add input azure.jsonl

* refactor - use separate file for batches endpoints

* fixes for passing custom llm provider to /batch endpoints

* pass custom llm provider to files endpoints

* update azure batches doc

* add info for azure batches api

* update batches endpoints

* use simple helper for raising proxy exception

* update config.yml

* fix imports

* add type hints to get_litellm_params

* update get_litellm_params

* update get_litellm_params

* update get slp

* QOL - stop double logging a create batch operations on custom loggers

* re use slp from og event

* _create_standard_logging_object_for_completed_batch

* fix linting errors

* reduce num changes in PR

* update BATCH_STATUS_POLL_MAX_ATTEMPTS
2024-12-24 17:44:28 -08:00
Krish Dholakia
7403d7b046 Add 'end_user', 'user' and 'requested_model' on more prometheus metrics (#7399)
* fix(prometheus.py): support streaming end user litellm_proxy_total_requests_metric tracking

* fix(prometheus.py): add 'requested_model' and 'end_user_id' to 'litellm_request_total_latency_metric_bucket'

enables latency tracking by end user + requested model

* fix(prometheus.py): add end user, user and requested model metrics to 'litellm_llm_api_latency_metric'

* test: update prometheus unit tests

* test(test_prometheus.py): update tests

* test(test_prometheus.py): fix test

* test: reorder test
2024-12-24 14:08:30 -08:00
Krish Dholakia
8fe1356406 LiteLLM Minor Fixes & Improvements (12/23/2024) - p3 (#7394)
* build(model_prices_and_context_window.json): add gemini-1.5-flash context caching

* fix(context_caching/transformation.py): just use last identified cache point

Fixes https://github.com/BerriAI/litellm/issues/6738

* fix(context_caching/transformation.py): pick first contiguous block - handles system message error from google

Fixes https://github.com/BerriAI/litellm/issues/6738

* fix(vertex_ai/gemini/): track context caching tokens

* refactor(gemini/): place transformation.py inside `chat/` folder

make it easy for user to know we support the equivalent endpoint

* fix: fix import

* refactor(vertex_ai/): move vertex_ai cost calc inside vertex_ai/ folder

make it easier to see cost calculation logic

* fix: fix linting errors

* fix: fix circular import

* feat(gemini/cost_calculator.py): support gemini context caching cost calculation

generifies anthropic's cost calculation function and uses it across anthropic + gemini

* build(model_prices_and_context_window.json): add cost tracking for gemini-1.5-flash-002 w/ context caching

Closes https://github.com/BerriAI/litellm/issues/6891

* docs(gemini.md): add gemini context caching architecture diagram

make it easier for user to understand how context caching works

* docs(gemini.md): link to relevant gemini context caching code

* docs(gemini/context_caching): add readme in github, make it easy for dev to know context caching is supported + where to go for code

* fix(llm_cost_calc/utils.py): handle gemini 128k token diff cost calc scenario

* fix(deepseek/cost_calculator.py): support deepseek context caching cost calculation

* test: fix test
2024-12-23 22:02:52 -08:00
Ishaan Jaff
9d66976162 (feat) Add basic logging support for /batches endpoints (#7381)
* add basic logging for create`batch`

* add create_batch as a call type

* add basic dd logging for batches

* basic batch creation logging on DD
2024-12-23 17:45:03 -08:00
Krish Dholakia
51f9f75c85 LiteLLM Minor Fixes & Improvements (12/23/2024) - P2 (#7386)
* fix(main.py): support 'mock_timeout=true' param

allows mock requests on proxy to have a time delay, for testing

* fix(main.py): ensure mock timeouts raise litellm.Timeout error

triggers retry/fallbacks

* fix: fix fallback + mock timeout testing

* fix(router.py): always return remaining tpm/rpm limits, if limits are known

allows for rate limit headers to be guaranteed

* docs(timeout.md): add docs on mock timeout = true

* fix(main.py): fix linting errors

* test: fix test
2024-12-23 17:41:27 -08:00
Krish Dholakia
71f659d26b Complete 'requests' library removal (#7350)
* refactor: initial commit moving watsonx_text to base_llm_http_handler + clarifying new provider directory structure

* refactor(watsonx/completion/handler.py): move to using base llm http handler

removes 'requests' library usage

* fix(watsonx_text/transformation.py): fix result transformation

migrates to transformation.py, for usage with base llm http handler

* fix(streaming_handler.py): migrate watsonx streaming to transformation.py

ensures streaming works with base llm http handler

* fix(streaming_handler.py): fix streaming linting errors and remove watsonx conditional logic

* fix(watsonx/): fix chat route post completion route refactor

* refactor(watsonx/embed): refactor watsonx to use base llm http handler for embedding calls as well

* refactor(base.py): remove requests library usage from litellm

* build(pyproject.toml): remove requests library usage

* fix: fix linting errors

* fix: fix linting errors

* fix(types/utils.py): fix validation errors for modelresponsestream

* fix(replicate/handler.py): fix linting errors

* fix(litellm_logging.py): handle modelresponsestream object

* fix(streaming_handler.py): fix modelresponsestream args

* fix: remove unused imports

* test: fix test

* fix: fix test

* test: fix test

* test: fix tests

* test: fix test

* test: fix patch target

* test: fix test
2024-12-22 07:21:25 -08:00
Krish Dholakia
4f3ddebf81 Litellm dev 2024 12 20 p1 (#7335)
* fix(utils.py): e2e azure tts cost tracking working

moves tts response obj to include hidden params (allows for litellm call id, etc. to be sent in response headers) ; fixes spend_Tracking_utils logging payload to account for non-base model use-case

Fixes https://github.com/BerriAI/litellm/issues/7223

* fix: fix linting errors

* build(model_prices_and_context_window.json): add bedrock llama 3.3

Closes https://github.com/BerriAI/litellm/issues/7329

* fix(openai.py): fix return type for sync openai httpx response

* test: update test

* fix(spend_tracking_utils.py): fix if check

* fix(spend_tracking_utils.py): fix if check

* test: improve debugging for test

* fix: fix import
2024-12-20 21:22:31 -08:00
Krish Dholakia
61b4c41c3c Litellm dev 12 20 2024 p3 (#7339)
* fix(proxy_track_cost_callback.py): log to db if only end user param given

* fix: allows for jwt-auth based end user id spend tracking to work

* fix(utils.py): fix 'get_end_user_id_for_cost_tracking' to use 'user_api_key_end_user_id'

more stable - works with jwt-auth based end user tracking as well

* test(test_jwt.py): add e2e unit test to confirm end user cost tracking works for spend logs

* test: update test to use end_user api key hash param

* fix(langfuse.py): support end user cost tracking via jwt auth + langfuse

logs end user to langfuse if decoded from jwt token

* fix: fix linting errors

* test: fix test

* test: fix test

* fix: fix end user id extraction

* fix: run test earlier
2024-12-20 21:13:32 -08:00
Krish Dholakia
b026230b0a Litellm dev 2024 12 19 p3 (#7322)
* fix(utils.py): remove unsupported optional params (if drop_params=True) before passing into map openai params

Fixes https://github.com/BerriAI/litellm/issues/7242

* test: new test for langfuse prompt management hook

Addresses https://github.com/BerriAI/litellm/issues/3893#issuecomment-2549080296

* feat(main.py): add 'get_chat_completion_prompt' customlogger hook

allows for langfuse prompt management

Addresses https://github.com/BerriAI/litellm/issues/3893#issuecomment-2549080296

* feat(langfuse_prompt_management.py): working e2e langfuse prompt management

works with `langfuse/` route

* feat(main.py): initial tracing for dynamic langfuse params

allows admin to specify langfuse keys by model in model_list

* feat(main.py): support passing langfuse credentials dynamically

* fix(langfuse_prompt_management.py): create langfuse client based on dynamic callback params

allows dynamic langfuse params to work

* fix: fix linting errors

* docs(prompt_management.md): refactor docs for sdk + proxy prompt management tutorial

* docs(prompt_management.md): cleanup doc

* docs: cleanup topnav

* docs(prompt_management.md): update docs to be easier to use

* fix: remove unused imports

* docs(prompt_management.md): add architectural overview doc

* fix(litellm_logging.py): fix dynamic param passing

* fix(langfuse_prompt_management.py): fix linting errors

* fix: fix linting errors

* fix: use typing_extensions for typealias to ensure python3.8 compatibility

* test: use stream_options in test to account for tiktoken diff

* fix: improve import error message, and check run test earlier
2024-12-20 13:30:16 -08:00
Ishaan Jaff
6641e75e0c (feat) add infinity rerank models (#7321)
* Support Infinity Reranker (custom reranking models) (#7247)

* Support Infinity Reranker

* Clean code

* Included transformation.py

* Clean code

* Added Infinity reranker test

* Clean code

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>

* transform_rerank_response

* update handler.py

* infinity rerank updates

* ci/cd run again

* add infinity unit tests

* docs add instruction on how to add a new provider for rerank

---------

Co-authored-by: Hao Shan <53949959+haoshan98@users.noreply.github.com>
2024-12-19 18:30:28 -08:00
Ishaan Jaff
b0738fd439 (code refactor) - Add BaseRerankConfig. Use BaseRerankConfig for cohere/rerank and azure_ai/rerank (#7319)
* add base rerank config

* working sync cohere rerank

* update rerank types

* update base rerank config

* remove old rerank

* add new cohere handler.py

* add cohere rerank transform

* add get_provider_rerank_config

* add rerank to base llm http handler

* add rerank utils

* add arerank to llm http handler.py

* add AzureAIRerankConfig

* updates rerank config

* update test rerank

* fix unused imports

* update get_provider_rerank_config

* test_basic_rerank_caching

* fix unused import

* test rerank
2024-12-19 17:03:34 -08:00
Ishaan Jaff
6220e17ebf (feat proxy) v2 - model max budgets (#7302)
* clean up unused code

* add _PROXY_VirtualKeyModelMaxBudgetLimiter

* adjust type imports

* working _PROXY_VirtualKeyModelMaxBudgetLimiter

* fix user_api_key_model_max_budget

* fix user_api_key_model_max_budget

* update naming

* update naming

* fix changes to RouterBudgetLimiting

* test_call_with_key_over_model_budget

* test_call_with_key_over_model_budget

* handle _get_request_model_budget_config

* e2e test for test_call_with_key_over_model_budget

* clean up test

* run ci/cd again

* add validate_model_max_budget

* docs fix

* update doc

* add e2e testing for _PROXY_VirtualKeyModelMaxBudgetLimiter

* test_unit_test_max_model_budget_limiter.py
2024-12-18 19:42:46 -08:00
Krish Dholakia
1a4910f6c0 fix(health.md): add rerank model health check information (#7295)
* fix(health.md): add rerank model health check information

* build(model_prices_and_context_window.json): add gemini 2.0 for google ai studio - pricing + commercial rate limits

* build(model_prices_and_context_window.json): add gemini-2.0 supports audio output = true

* docs(team_model_add.md): clarify allowing teams to add models is an enterprise feature

* fix(o1_transformation.py): add support for 'n', 'response_format' and 'stop' params for o1 and 'stream_options' param for o1-mini

* build(model_prices_and_context_window.json): add 'supports_system_message' to supporting openai models

needed as o1-preview, and o1-mini models don't support 'system message

* fix(o1_transformation.py): translate system message based on if o1 model supports it

* fix(o1_transformation.py): return 'stream' param support if o1-mini/o1-preview

o1 currently doesn't support streaming, but the other model versions do

Fixes https://github.com/BerriAI/litellm/issues/7292

* fix(o1_transformation.py): return tool calling/response_format in supported params if model map says so

Fixes https://github.com/BerriAI/litellm/issues/7292

* fix: fix linting errors

* fix: update '_transform_messages'

* fix(o1_transformation.py): fix provider passed for supported param checks

* test(base_llm_unit_tests.py): skip test if api takes >5s to respond

* fix(utils.py): return false in 'supports_factory' if can't find value

* fix(o1_transformation.py): always return stream + stream_options as supported params + handle stream options being passed in for azure o1

* feat(openai.py): support stream faking natively in openai handler

Allows o1 calls to be faked for just the "o1" model, allows native streaming for o1-mini, o1-preview

 Fixes https://github.com/BerriAI/litellm/issues/7292

* fix(openai.py): use inference param instead of original optional param
2024-12-18 19:18:10 -08:00
Ishaan Jaff
70883bc1b8 (feat - proxy) Add status_code to litellm_proxy_total_requests_metric_total (#7293)
* fix _select_model_name_for_cost_calc docstring

* add STATUS_CODE  to prometheus

* test prometheus unit tests

* test_prometheus_unit_tests.py

* update Proxy Level Tracking Metrics docs

* fix test_proxy_failure_metrics

* fix test_proxy_failure_metrics
2024-12-18 15:55:02 -08:00
Krish Dholakia
050499ec8f Litellm dev readd prompt caching (#7299)
* fix(router.py): re-add saving model id on prompt caching valid successful deployment

* fix(router.py): introduce optional pre_call_checks

isolate prompt caching logic in a separate file

* fix(prompt_caching_deployment_check.py): fix import

* fix(router.py): new 'async_filter_deployments' event hook

allows custom logger to filter deployments returned to routing strategy

* feat(prompt_caching_deployment_check.py): initial working commit of prompt caching based routing

* fix(cooldown_callbacks.py): fix linting error

* fix(budget_limiter.py): move budget logger to async_filter_deployment hook

* test: add unit test

* test(test_router_helper_utils.py): add unit testing

* fix(budget_limiter.py): fix linting errors

* docs(config_settings.md): add 'optional_pre_call_checks' to router_settings param docs
2024-12-18 15:13:49 -08:00
Krish Dholakia
f966e279a6 LiteLLM Minor Fixes & Improvements (12/16/2024) - p1 (#7263)
* fix(factory.py): skip empty text blocks for bedrock user messages

Fixes https://github.com/BerriAI/litellm/issues/7169

* Add support for Gemini 2.0 GoogleSearch tool (#7257)

* Add support for google_search tool in gemini 2.0

* Add/modify tests

* Fix grounding check

* Remove 2.0 grounding test; exclude experimental model in VERTEX_MODELS_TO_NOT_TEST

* Swap order of tools

* DFix formatting

* fix(get_api_base.py): return api base in streaming response

Fixes https://github.com/BerriAI/litellm/issues/7249

Closes https://github.com/BerriAI/litellm/pull/7250

* fix(cost_calculator.py): only set base model to model if not none

Fixes https://github.com/BerriAI/litellm/issues/7223

* fix(cost_calculator.py): enforce stricter order when picking model for cost calculation

* fix(cost_calculator.py): fix '_select_model_name_for_cost_calc' to return model name with region name prefix if provided

* fix(utils.py): fix 'get_model_info()' to handle edge case where model name starts with custom llm provider AND custom llm provider is given

* fix(cost_calculator.py): handle `custom_llm_provider-` scenario

* fix(cost_calculator.py): e2e working tts cost tracking

ensures initial message is passed in, to cost calculator

* fix(factory.py): suppress linting errors

* fix(cost_calculator.py): strip llm provider from model name after selecting cost calc model

* fix(litellm_logging.py): store initial request in 'input' field + accept base_model to be passed in litellm_params directly

* test: handle none env var value in flaky test

* fix(litellm_logging.py): fix linting errors

---------

Co-authored-by: Sam B <samlingx@gmail.com>
2024-12-17 15:33:36 -08:00
Ishaan Jaff
2459f9735d (feat) Add Tag-based budgets on litellm router / proxy (#7236)
* add BudgetConfig

* add _get_tags_from_request_kwargs

* test_tag_budgets_e2e_test_expect_to_fail

* add a check for request tags

* fix _async_get_cache_keys_for_router_budget_limiting

* fix test

* fix _sync_in_memory_spend_with_redis

* _async_get_cache_keys_for_router_budget_limiting

* fix _init_tag_budgets

* fix type casting

* docs show error for tag budget limit hit

* fix _get_tags_from_request_kwargs

* fix undo change
2024-12-14 17:28:36 -08:00