Commit graph

32 commits

Author SHA1 Message Date
Krrish Dholakia
06e69a414e fix(vertex_ai/common_utils.py): fix handling constructed url with default vertex config 2025-03-22 11:32:01 -07:00
Krrish Dholakia
94d3413335 refactor(llm_passthrough_endpoints.py): refactor vertex passthrough to use common llm passthrough handler.py 2025-03-22 10:42:46 -07:00
James Guthrie
437dbe7246 fix: VertexAI outputDimensionality configuration
VertexAI's API documentation [1] is an absolute mess. In it, they
describe the parameter to configure output dimensionality as
`output_dimensionality`. In the API example, they switch to using snake
case `outputDimensionality`, which is the correct variant.

[1]: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#generative-ai-get-text-embedding-drest
2025-03-19 11:07:36 +01:00
sven
8d053930e9 (gemini)Handle HTTP 201 status code in Vertex AI response 2025-03-13 13:44:38 +09:00
Ishaan Jaff
e2d612efd9
Bug fix - String data: stripped from entire content in streamed Gemini responses (#9070)
* _strip_sse_data_from_chunk

* use _strip_sse_data_from_chunk

* use _strip_sse_data_from_chunk

* use _strip_sse_data_from_chunk

* _strip_sse_data_from_chunk

* test_strip_sse_data_from_chunk

* _strip_sse_data_from_chunk

* testing

* _strip_sse_data_from_chunk
2025-03-07 21:06:39 -08:00
Krish Dholakia
f6535ae6ad
Support format param for specifying image type (#9019)
* fix(transformation.py): support a 'format' parameter for image's

allow user to specify mime type

* fix: pass mimetype via 'format' param

* feat(gemini/chat/transformation.py): support 'format' param for gemini

* fix(factory.py): support 'format' param on sync bedrock converse calls

* feat(bedrock/converse_transformation.py): support 'format' param for bedrock async calls

* refactor(factory.py): move to supporting 'format' param in base helper

ensures consistency in param support

* feat(gpt_transformation.py): filter out 'format' param

don't send invalid param to openai

* fix(gpt_transformation.py): fix translation

* fix: fix translation error
2025-03-05 19:52:53 -08:00
Krish Dholakia
5e386c28b2
Litellm dev 03 04 2025 p3 (#8997)
* fix(core_helpers.py): handle litellm_metadata instead of 'metadata'

* feat(batches/): ensure batches logs are written to db

makes batches response dict compatible

* fix(cost_calculator.py): handle batch response being a dictionary

* fix(batches/main.py): modify retrieve endpoints to use @client decorator

enables logging to work on retrieve call

* fix(batches/main.py): fix retrieve batch response type to be 'dict' compatible

* fix(spend_tracking_utils.py): send unique uuid for retrieve batch call type

create batch and retrieve batch share the same id

* fix(spend_tracking_utils.py): prevent duplicate retrieve batch calls from being double counted

* refactor(batches/): refactor cost tracking for batches - do it on retrieve, and within the established litellm_logging pipeline

ensures cost is always logged to db

* fix: fix linting errors

* fix: fix linting error
2025-03-04 21:58:03 -08:00
Krish Dholakia
f1a44d1fdc
fix(common_utils.py): handle $id in response schema when calling vert… (#8991)
* fix(common_utils.py): handle $id in response schema when calling vertex ai

Fixes issue where `$id` present in response_schema was not accepted by vertex ai

* test(test_vertex.py): add unit test to ensure $id stripped out of vertex schema
2025-03-04 21:19:50 -08:00
Krish Dholakia
88eedb22b9
vertex ai anthropic thinking param support (#8853)
* fix(vertex_llm_base.py): handle credentials passed in as dictionary

* fix(router.py): support vertex credentials as json dict

* test(test_vertex.py): allows easier testing

mock anthropic thinking response for vertex ai

* test(vertex_ai_partner_models/): don't remove "@" from model

breaks anthropic cost calculation

* test: move testing

* fix: fix linting error

* fix: fix linting error

* fix(vertex_ai_partner_models/main.py): split @ for codestral model

* test: fix test

* fix: fix stripping "@" on mistral models

* fix: fix test

* test: fix test
2025-02-26 21:37:18 -08:00
Krish Dholakia
8903bd1c7f
fix(utils.py): fix vertex ai optional param handling (#8477)
* fix(utils.py): fix vertex ai optional param handling

don't pass max retries to unsupported route

Fixes https://github.com/BerriAI/litellm/issues/8254

* fix(get_supported_openai_params.py): fix linting error

* fix(get_supported_openai_params.py): default to openai-like spec

* test: fix test

* fix: fix linting error

* Improved wildcard route handling on `/models` and `/model_group/info`  (#8473)

* fix(model_checks.py): update returning known model from wildcard to filter based on given model prefix

ensures wildcard route - `vertex_ai/gemini-*` just returns known vertex_ai/gemini- models

* test(test_proxy_utils.py): add unit testing for new 'get_known_models_from_wildcard' helper

* test(test_models.py): add e2e testing for `/model_group/info` endpoint

* feat(prometheus.py): support tracking total requests by user_email on prometheus

adds initial support for tracking total requests by user_email

* test(test_prometheus.py): add testing to ensure user email is always tracked

* test: update testing for new prometheus metric

* test(test_prometheus_unit_tests.py): add user email to total proxy metric

* test: update tests

* test: fix spend tests

* test: fix test

* fix(pagerduty.py): fix linting error

* (Bug fix) - Using `include_usage` for /completions requests + unit testing (#8484)

* pass stream options (#8419)

* test_completion_streaming_usage_metrics

* test_text_completion_include_usage

---------

Co-authored-by: Kaushik Deka <55996465+Kaushikdkrikhanu@users.noreply.github.com>

* fix naming docker stable release

* build(model_prices_and_context_window.json): handle azure model update

* docs(token_auth.md): clarify scopes can be a list or comma separated string

* docs: fix docs

* add sonar pricings (#8476)

* add sonar pricings

* Update model_prices_and_context_window.json

* Update model_prices_and_context_window.json

* Update model_prices_and_context_window_backup.json

* update load testing script

* fix test_async_router_context_window_fallback

* pplx - fix supports tool choice openai param (#8496)

* fix prom check startup (#8492)

* test_async_router_context_window_fallback

* ci(config.yml): mark daily docker builds with `-nightly` (#8499)

Resolves https://github.com/BerriAI/litellm/discussions/8495

* (Redis Cluster) - Fixes for using redis cluster + pipeline (#8442)

* update RedisCluster creation

* update RedisClusterCache

* add redis ClusterCache

* update async_set_cache_pipeline

* cleanup redis cluster usage

* fix redis pipeline

* test_init_async_client_returns_same_instance

* fix redis cluster

* update mypy_path

* fix init_redis_cluster

* remove stub

* test redis commit

* ClusterPipeline

* fix import

* RedisCluster import

* fix redis cluster

* Potential fix for code scanning alert no. 2129: Clear-text logging of sensitive information

Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>

* fix naming of redis cluster integration

* test_redis_caching_ttl_pipeline

* fix async_set_cache_pipeline

---------

Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>

* Litellm UI stable version 02 12 2025 (#8497)

* fix(key_management_endpoints.py): fix `/key/list` to include `return_full_object` as a top-level query param

Allows user to specify they want the keys as a list of objects

* refactor(key_list.tsx): initial refactor of key table in user dashboard

offloads key filtering logic to backend api

prevents common error of user not being able to see their keys

* fix(key_management_endpoints.py): allow internal user to query `/key/list` to see their keys

* fix(key_management_endpoints.py): add validation checks and filtering to `/key/list` endpoint

allow internal user to see their keys. not anybody else's

* fix(view_key_table.tsx): fix issue where internal user could not see default team keys

* fix: fix linting error

* fix: fix linting error

* fix: fix linting error

* fix: fix linting error

* fix: fix linting error

* fix: fix linting error

* fix: fix linting error

* test_supports_tool_choice

* test_async_router_context_window_fallback

* fix: fix test (#8501)

* Litellm dev 02 12 2025 p1 (#8494)

* Resolves https://github.com/BerriAI/litellm/issues/6625 (#8459)

- enables no auth for SMTP

Signed-off-by: Regli Daniel <daniel.regli1@sanitas.com>

* add sonar pricings (#8476)

* add sonar pricings

* Update model_prices_and_context_window.json

* Update model_prices_and_context_window.json

* Update model_prices_and_context_window_backup.json

* test: fix test

---------

Signed-off-by: Regli Daniel <daniel.regli1@sanitas.com>
Co-authored-by: Dani Regli <1daniregli@gmail.com>
Co-authored-by: Lucca Zenóbio <luccazen@gmail.com>

* test: fix test

* UI Fixes p2  (#8502)

* refactor(admin.tsx): cleanup add new admin flow

removes buggy flow. Ensures just 1 simple way to add users / update roles.

* fix(user_search_modal.tsx): ensure 'add member' button is always visible

* fix(edit_membership.tsx): ensure 'save changes' button always visible

* fix(internal_user_endpoints.py): ensure user in org can be deleted

Fixes issue where user couldn't be deleted if they were a member of an org

* fix: fix linting error

* add phoenix docs for observability integration (#8522)

* Add files via upload

* Update arize_integration.md

* Update arize_integration.md

* add Phoenix docs

* Added custom_attributes to additional_keys which can be sent to athina (#8518)

* (UI) fix log details page  (#8524)

* rollback changes to view logs page

* ui new build

* add interface for prefetch

* fix spread operation

* fix max size for request view page

* clean up table

* ui fix column on request logs page

* ui new build

* Add UI Support for Admins to Call /cache/ping and View Cache Analytics (#8475) (#8519)

* [Bug] UI: Newly created key does not display on the View Key Page (#8039)

- Fixed issue where all keys appeared blank for admin users.
- Implemented filtering of data via team settings to ensure all keys are displayed correctly.

* Fix:
- Updated the validator to allow model editing when `keyTeam.team_alias === "Default Team"`.
- Ensured other teams still follow the original validation rules.

* - added some classes in global.css
- added text wrap in output of request,response and metadata in index.tsx
- fixed styles of table in table.tsx

* - added full payload when we open single log entry
- added Combined Info Card in index.tsx

* fix: keys not showing on refresh for internal user

* merge

* main merge

* cache page

* ca remove

* terms change

* fix:places caching inside exp

---------

Signed-off-by: Regli Daniel <daniel.regli1@sanitas.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Kaushik Deka <55996465+Kaushikdkrikhanu@users.noreply.github.com>
Co-authored-by: Lucca Zenóbio <luccazen@gmail.com>
Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>
Co-authored-by: Dani Regli <1daniregli@gmail.com>
Co-authored-by: exiao <exiao@users.noreply.github.com>
Co-authored-by: vivek-athina <153479827+vivek-athina@users.noreply.github.com>
Co-authored-by: Taha Ali <123803932+tahaali-dev@users.noreply.github.com>
2025-02-13 19:58:50 -08:00
Krish Dholakia
dfbbf0bde8
fix: dictionary changed size during iteration error (#8327) (#8341)
Co-authored-by: Joey Feldberg <joeyfeldberg@users.noreply.github.com>
Co-authored-by: Joey Feldberg <12495578+joeyfeldberg@users.noreply.github.com>
2025-02-07 16:20:28 -08:00
Krish Dholakia
80d6bbec29
Litellm dev 01 14 2025 p2 (#7772)
* feat(pass_through_endpoints.py): fix anthropic end user cost tracking

* fix(anthropic/chat/transformation.py): use returned provider model for anthropic

handles anthropic `-latest` tag in request body throwing cost calculation errors

ensures we can be accurate in our model cost tracking

* feat(model_prices_and_context_window.json): add gemini-2.0-flash-thinking-exp pricing

* test: update test to use assumption that user_api_key_dict can get anthropic user id

* test: fix test

* fix: fix test

* fix(anthropic_pass_through.py): uncomment previous anthropic end-user cost tracking code block

can't guarantee user api key dict always has end user id - too many code paths

* fix(user_api_key_auth.py): this allows end user id from request body to always be read and set in auth object

* fix(auth_check.py): fix linting error

* test: fix auth check

* fix(auth_utils.py): fix get end user id to handle metadata = None
2025-01-15 21:34:50 -08:00
Krish Dholakia
c10ae8879e
fix(vertex_ai/gemini/transformation.py): handle 'http://' in gemini p… (#7660)
* fix(vertex_ai/gemini/transformation.py): handle 'http://' in gemini process url

* refactor(router.py): refactor '_prompt_management_factory' to use logging obj get_chat_completion logic

deduplicates code

* fix(litellm_logging.py): update 'get_chat_completion_prompt' to update logging object messages

* docs(prompt_management.md): update prompt management to be in beta

given feedback - this still needs to be revised (e.g. passing in user message, not ignoring)

* refactor(prompt_management_base.py): introduce base class for prompt management

allows consistent behaviour across prompt management integrations

* feat(prompt_management_base.py): support adding client message to template message + refactor langfuse prompt management to use prompt management base

* fix(litellm_logging.py): log prompt id + prompt variables to langfuse if set

allows tracking what prompt was used for what purpose

* feat(litellm_logging.py): log prompt management metadata in standard logging payload + use in langfuse

allows logging prompt id / prompt variables to langfuse

* test: fix test

* fix(router.py): cleanup unused imports

* fix: fix linting error

* fix: fix trace param typing

* fix: fix linting errors

* fix: fix code qa check
2025-01-10 07:31:59 -08:00
Ishaan Jaff
13f364682d
(Feat - Batches API) add support for retrieving vertex api batch jobs (#7661)
* add _async_retrieve_batch

* fix aretrieve_batch

* fix _get_batch_id_from_vertex_ai_batch_response

* fix batches docs
2025-01-09 18:35:03 -08:00
Krish Dholakia
e8ed40a27b
Litellm dev 01 01 2025 p2 (#7615)
* fix(utils.py): prevent double logging when passing 'fallbacks=' to .completion()

Fixes https://github.com/BerriAI/litellm/issues/7477

* fix(utils.py): fix vertex anthropic check

* fix(utils.py): ensure supported params is always set

Fixes https://github.com/BerriAI/litellm/issues/7470

* test(test_optional_params.py): add unit testing to prevent mistranslation

Fixes https://github.com/BerriAI/litellm/issues/7470

* fix: fix linting error

* test: cleanup
2025-01-07 21:40:33 -08:00
Krish Dholakia
0c3fef24cd
Litellm dev 01 06 2025 p2 (#7597)
* test(test_amazing_vertex_completion.py): fix test

* test: initial working code gecko test

* fix(vertex_ai_non_gemini.py): support vertex ai code gecko fake streaming

Fixes https://github.com/BerriAI/litellm/issues/7360

* test(test_get_model_info.py): add test for getting custom provider model info

Covers https://github.com/BerriAI/litellm/issues/7575

* fix(utils.py): fix get_provider_model_info check

Handle custom llm provider scenario

Fixes https://github.com/
BerriAI/litellm/issues/7575
2025-01-06 21:04:49 -08:00
Krish Dholakia
0120176541
Litellm dev 12 30 2024 p2 (#7495)
* test(azure_openai_o1.py): initial commit with testing for azure openai o1 preview model

* fix(base_llm_unit_tests.py): handle azure o1 preview response format tests

skip as o1 on azure doesn't support tool calling yet

* fix: initial commit of azure o1 handler using openai caller

simplifies calling + allows fake streaming logic alr. implemented for openai to just work

* feat(azure/o1_handler.py): fake o1 streaming for azure o1 models

azure does not currently support streaming for o1

* feat(o1_transformation.py): support overriding 'should_fake_stream' on azure/o1 via 'supports_native_streaming' param on model info

enables user to toggle on when azure allows o1 streaming without needing to bump versions

* style(router.py): remove 'give feedback/get help' messaging when router is used

Prevents noisy messaging

Closes https://github.com/BerriAI/litellm/issues/5942

* fix(types/utils.py): handle none logprobs

Fixes https://github.com/BerriAI/litellm/issues/328

* fix(exception_mapping_utils.py): fix error str unbound error

* refactor(azure_ai/): move to openai_like chat completion handler

allows for easy swapping of api base url's (e.g. ai.services.com)

Fixes https://github.com/BerriAI/litellm/issues/7275

* refactor(azure_ai/): move to base llm http handler

* fix(azure_ai/): handle differing api endpoints

* fix(azure_ai/): make sure all unit tests are passing

* fix: fix linting errors

* fix: fix linting errors

* fix: fix linting error

* fix: fix linting errors

* fix(azure_ai/transformation.py): handle extra body param

* fix(azure_ai/transformation.py): fix max retries param handling

* fix: fix test

* test(test_azure_o1.py): fix test

* fix(llm_http_handler.py): support handling azure ai unprocessable entity error

* fix(llm_http_handler.py): handle sync invalid param error for azure ai

* fix(azure_ai/): streaming support with base_llm_http_handler

* fix(llm_http_handler.py): working sync stream calls with unprocessable entity handling for azure ai

* fix: fix linting errors

* fix(llm_http_handler.py): fix linting error

* fix(azure_ai/): handle cohere tool call invalid index param error
2025-01-01 18:57:29 -08:00
Ishaan Jaff
2979b8301c
(feat) POST /fine_tuning/jobs support passing vertex specific hyper params (#7490)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 12s
* update convert_openai_request_to_vertex

* test_create_vertex_fine_tune_jobs_mocked

* fix order of methods

* update LiteLLMFineTuningJobCreate

* update OpenAIFineTuningHyperparameters

* update vertex hyper params in response

* _transform_openai_hyperparameters_to_vertex_hyperparameters

* supervised_tuning_spec["hyperParameters"] fix

* fix mapping for ft params testing

* docs fine tuning apis

* fix test_convert_basic_openai_request_to_vertex_request

* update hyperparams for create fine tuning

* fix linting

* test_create_vertex_fine_tune_jobs_mocked_with_hyperparameters

* run ci/cd again

* test_convert_basic_openai_request_to_vertex_request
2025-01-01 07:44:48 -08:00
Ishaan Jaff
859f6e1635
(fix) v1/fine_tuning/jobs with VertexAI (#7487)
* update convert_openai_request_to_vertex

* test_create_vertex_fine_tune_jobs_mocked
2024-12-31 15:09:56 -08:00
Krish Dholakia
31ace870a2
Litellm dev 12 28 2024 p1 (#7463)
* refactor(utils.py): migrate amazon titan config to base config

* refactor(utils.py): refactor bedrock meta invoke model translation to use base config

* refactor(utils.py): move bedrock ai21 to base config

* refactor(utils.py): move bedrock cohere to base config

* refactor(utils.py): move bedrock mistral to use base config

* refactor(utils.py): move all provider optional param translations to using a config

* docs(clientside_auth.md): clarify how to pass vertex region to litellm proxy

* fix(utils.py): handle scenario where custom llm provider is none / empty

* fix: fix get config

* test(test_otel_load_tests.py): widen perf margin

* fix(utils.py): fix get provider config check to handle custom llm's

* fix(utils.py): fix check
2024-12-28 20:26:00 -08:00
Krish Dholakia
3ac54483a7
Litellm dev 12 24 2024 p3 (#7403)
* fix(model_prices_and_context_window.json): specify meta llama is a bedrock converse model route

Fixes https://github.com/BerriAI/litellm/issues/7385

* test(test_get_model_info.py): enforce all new bedrock chat models added have the bedrock_converse route

Prevents https://github.com/BerriAI/litellm/issues/7385 and https://github.com/BerriAI/litellm/discussions/7325

* fix(get_supported_openai_params.py): use vertex gemini config by default for vertex ai route

Fixes https://github.com/BerriAI/litellm/issues/7378

* refactor(vertex_ai/gemini/): rename vertexaiconfig to vertexaibaseconfig - make it clear vertexaiconfig = vertexgemini config

* build(model_prices_and_context_window.json): add gpt-4o-audio-preview-2024-12-17

Closes https://github.com/BerriAI/litellm/issues/7367

* test: fix test

* test: fix o1 tests

* fix: handle llm api errors

* fix: fix linting errors
2024-12-24 18:07:53 -08:00
Krish Dholakia
c3edfc2c92
LiteLLM Minor Fixes & Improvements (12/23/2024) - p3 (#7394)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 35s
* build(model_prices_and_context_window.json): add gemini-1.5-flash context caching

* fix(context_caching/transformation.py): just use last identified cache point

Fixes https://github.com/BerriAI/litellm/issues/6738

* fix(context_caching/transformation.py): pick first contiguous block - handles system message error from google

Fixes https://github.com/BerriAI/litellm/issues/6738

* fix(vertex_ai/gemini/): track context caching tokens

* refactor(gemini/): place transformation.py inside `chat/` folder

make it easy for user to know we support the equivalent endpoint

* fix: fix import

* refactor(vertex_ai/): move vertex_ai cost calc inside vertex_ai/ folder

make it easier to see cost calculation logic

* fix: fix linting errors

* fix: fix circular import

* feat(gemini/cost_calculator.py): support gemini context caching cost calculation

generifies anthropic's cost calculation function and uses it across anthropic + gemini

* build(model_prices_and_context_window.json): add cost tracking for gemini-1.5-flash-002 w/ context caching

Closes https://github.com/BerriAI/litellm/issues/6891

* docs(gemini.md): add gemini context caching architecture diagram

make it easier for user to understand how context caching works

* docs(gemini.md): link to relevant gemini context caching code

* docs(gemini/context_caching): add readme in github, make it easy for dev to know context caching is supported + where to go for code

* fix(llm_cost_calc/utils.py): handle gemini 128k token diff cost calc scenario

* fix(deepseek/cost_calculator.py): support deepseek context caching cost calculation

* test: fix test
2024-12-23 22:02:52 -08:00
Ishaan Jaff
05b0d2026f
(feat) Add cost tracking for /batches requests OpenAI (#7384)
* add basic logging for create`batch`

* add create_batch as a call type

* add basic dd logging for batches

* basic batch creation logging on DD

* batch endpoints add cost calc

* fix batches_async_logging

* separate folder for batches testing

* new job for batches tests

* test batches logging

* fix validation logic

* add vertex_batch_completions.jsonl

* test test_async_create_batch

* test_async_create_batch

* update tests

* test_completion_with_no_model

* remove dead code

* update load_vertex_ai_credentials

* test_avertex_batch_prediction

* update get async httpx client

* fix get_async_httpx_client

* update test_avertex_batch_prediction

* fix batches testing config.yaml

* add google deps

* fix vertex files handler
2024-12-23 17:47:26 -08:00
Krish Dholakia
27a4d08604
Litellm dev 2024 12 19 p3 (#7322)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 13s
* fix(utils.py): remove unsupported optional params (if drop_params=True) before passing into map openai params

Fixes https://github.com/BerriAI/litellm/issues/7242

* test: new test for langfuse prompt management hook

Addresses https://github.com/BerriAI/litellm/issues/3893#issuecomment-2549080296

* feat(main.py): add 'get_chat_completion_prompt' customlogger hook

allows for langfuse prompt management

Addresses https://github.com/BerriAI/litellm/issues/3893#issuecomment-2549080296

* feat(langfuse_prompt_management.py): working e2e langfuse prompt management

works with `langfuse/` route

* feat(main.py): initial tracing for dynamic langfuse params

allows admin to specify langfuse keys by model in model_list

* feat(main.py): support passing langfuse credentials dynamically

* fix(langfuse_prompt_management.py): create langfuse client based on dynamic callback params

allows dynamic langfuse params to work

* fix: fix linting errors

* docs(prompt_management.md): refactor docs for sdk + proxy prompt management tutorial

* docs(prompt_management.md): cleanup doc

* docs: cleanup topnav

* docs(prompt_management.md): update docs to be easier to use

* fix: remove unused imports

* docs(prompt_management.md): add architectural overview doc

* fix(litellm_logging.py): fix dynamic param passing

* fix(langfuse_prompt_management.py): fix linting errors

* fix: fix linting errors

* fix: use typing_extensions for typealias to ensure python3.8 compatibility

* test: use stream_options in test to account for tiktoken diff

* fix: improve import error message, and check run test earlier
2024-12-20 13:30:16 -08:00
Ishaan Jaff
c7f14e936a
(code quality) run ruff rule to ban unused imports (#7313)
* remove unused imports

* fix AmazonConverseConfig

* fix test

* fix import

* ruff check fixes

* test fixes

* fix testing

* fix imports
2024-12-19 12:33:42 -08:00
Ishaan Jaff
7a5dd29fe0
(fix) unable to pass input_type parameter to Voyage AI embedding mode (#7276)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 46s
* VoyageEmbeddingConfig

* fix voyage logic to get params

* add voyage embedding transformation

* add get_provider_embedding_config

* use BaseEmbeddingConfig

* voyage clean up

* use llm http handler for embedding transformations

* test_voyage_ai_embedding_extra_params

* add voyage async

* test_voyage_ai_embedding_extra_params

* add async for llm http handler

* update BaseLLMEmbeddingTest

* test_voyage_ai_embedding_extra_params

* fix linting

* fix get_provider_embedding_config

* fix anthropic text test

* update location of base/chat/transformation

* fix import path

* fix IBMWatsonXAIConfig
2024-12-17 19:23:49 -08:00
Krish Dholakia
179d2f56b7
LiteLLM Minor Fixes & Improvements (12/16/2024) - p1 (#7263)
* fix(factory.py): skip empty text blocks for bedrock user messages

Fixes https://github.com/BerriAI/litellm/issues/7169

* Add support for Gemini 2.0 GoogleSearch tool (#7257)

* Add support for google_search tool in gemini 2.0

* Add/modify tests

* Fix grounding check

* Remove 2.0 grounding test; exclude experimental model in VERTEX_MODELS_TO_NOT_TEST

* Swap order of tools

* DFix formatting

* fix(get_api_base.py): return api base in streaming response

Fixes https://github.com/BerriAI/litellm/issues/7249

Closes https://github.com/BerriAI/litellm/pull/7250

* fix(cost_calculator.py): only set base model to model if not none

Fixes https://github.com/BerriAI/litellm/issues/7223

* fix(cost_calculator.py): enforce stricter order when picking model for cost calculation

* fix(cost_calculator.py): fix '_select_model_name_for_cost_calc' to return model name with region name prefix if provided

* fix(utils.py): fix 'get_model_info()' to handle edge case where model name starts with custom llm provider AND custom llm provider is given

* fix(cost_calculator.py): handle `custom_llm_provider-` scenario

* fix(cost_calculator.py): e2e working tts cost tracking

ensures initial message is passed in, to cost calculator

* fix(factory.py): suppress linting errors

* fix(cost_calculator.py): strip llm provider from model name after selecting cost calc model

* fix(litellm_logging.py): store initial request in 'input' field + accept base_model to be passed in litellm_params directly

* test: handle none env var value in flaky test

* fix(litellm_logging.py): fix linting errors

---------

Co-authored-by: Sam B <samlingx@gmail.com>
2024-12-17 15:33:36 -08:00
Krish Dholakia
b82add11ba
LITELLM: Remove requests library usage (#7235)
* fix(generic_api_callback.py): remove requests lib usage

* fix(budget_manager.py): remove requests lib usgae

* fix(main.py): cleanup requests lib usage

* fix(utils.py): remove requests lib usage

* fix(argilla.py): fix argilla test

* fix(athina.py): replace 'requests' lib usage with litellm module

* fix(greenscale.py): replace 'requests' lib usage with httpx

* fix: remove unused 'requests' lib import + replace usage in some places

* fix(prompt_layer.py): remove 'requests' lib usage from prompt layer

* fix(ollama_chat.py): remove 'requests' lib usage

* fix(baseten.py): replace 'requests' lib usage

* fix(codestral/): replace 'requests' lib usage

* fix(predibase/): replace 'requests' lib usage

* refactor: cleanup unused 'requests' lib imports

* fix(oobabooga.py): cleanup 'requests' lib usage

* fix(invoke_handler.py): remove unused 'requests' lib usage

* refactor: cleanup unused 'requests' lib import

* fix: fix linting errors

* refactor(ollama/): move ollama to using base llm http handler

removes 'requests' lib dep for ollama integration

* fix(ollama_chat.py): fix linting errors

* fix(ollama/completion/transformation.py): convert non-jpeg/png image to jpeg/png before passing to ollama
2024-12-17 12:50:04 -08:00
Krish Dholakia
516c2a6a70
Litellm remove circular imports (#7232)
* fix(utils.py): initial commit to remove circular imports - moves llmproviders to utils.py

* fix(router.py): fix 'litellm.EmbeddingResponse' import from router.py

'

* refactor: fix litellm.ModelResponse import on pass through endpoints

* refactor(litellm_logging.py): fix circular import for custom callbacks literal

* fix(factory.py): fix circular imports inside prompt factory

* fix(cost_calculator.py): fix circular import for 'litellm.Usage'

* fix(proxy_server.py): fix potential circular import with `litellm.Router'

* fix(proxy/utils.py): fix potential circular import in `litellm.Router`

* fix: remove circular imports in 'auth_checks' and 'guardrails/'

* fix(prompt_injection_detection.py): fix router impor t

* fix(vertex_passthrough_logging_handler.py): fix potential circular imports in vertex pass through

* fix(anthropic_pass_through_logging_handler.py): fix potential circular imports

* fix(slack_alerting.py-+-ollama_chat.py): fix modelresponse import

* fix(base.py): fix potential circular import

* fix(handler.py): fix potential circular ref in codestral + cohere handler's

* fix(azure.py): fix potential circular imports

* fix(gpt_transformation.py): fix modelresponse import

* fix(litellm_logging.py): add logging base class - simplify typing

makes it easy for other files to type check the logging obj without introducing circular imports

* fix(azure_ai/embed): fix potential circular import on handler.py

* fix(databricks/): fix potential circular imports in databricks/

* fix(vertex_ai/): fix potential circular imports on vertex ai embeddings

* fix(vertex_ai/image_gen): fix import

* fix(watsonx-+-bedrock): cleanup imports

* refactor(anthropic-pass-through-+-petals): cleanup imports

* refactor(huggingface/): cleanup imports

* fix(ollama-+-clarifai): cleanup circular imports

* fix(openai_like/): fix impor t

* fix(openai_like/): fix embedding handler

cleanup imports

* refactor(openai.py): cleanup imports

* fix(sagemaker/transformation.py): fix import

* ci(config.yml): add circular import test to ci/cd
2024-12-14 16:28:34 -08:00
Ishaan Jaff
5885ee5e14 fix test_vertexai_model_garden_model_completion 2024-12-11 12:07:32 -08:00
Ishaan Jaff
78d132c1fb
(Refactor) Code Quality improvement - rename text_completion_codestral.py -> codestral/completion/ (#7172)
* rename files

* fix codestral fim organization

* fix CodestralTextCompletionConfig

* fix import CodestralTextCompletion

* fix BaseLLM

* fix imports

* fix CodestralTextCompletionConfig

* fix imports CodestralTextCompletion
2024-12-11 00:55:47 -08:00
Ishaan Jaff
21003c4337
Code Quality Improvement - use vertex_ai/ as folder name for vertexAI (#7166)
* fix rename vertex ai

* run ci/cd again
2024-12-11 00:32:41 -08:00