* Fix Vertex AI function calling invoke: use JSON format instead of protobuf text format. (#6702)
* test: test tool_call conversion when arguments is empty dict
Fixes https://github.com/BerriAI/litellm/issues/6833
* fix(openai_like/handler.py): return more descriptive error message
Fixes https://github.com/BerriAI/litellm/issues/6812
* test: skip overloaded model
* docs(anthropic.md): update anthropic docs to show how to route to any new model
* feat(groq/): fake stream when 'response_format' param is passed
Groq doesn't support streaming when response_format is set
* feat(groq/): add response_format support for groq
Closes https://github.com/BerriAI/litellm/issues/6845
* fix(o1_handler.py): remove fake streaming for o1
Closes https://github.com/BerriAI/litellm/issues/6801
* build(model_prices_and_context_window.json): add groq llama3.2b model pricing
Closes https://github.com/BerriAI/litellm/issues/6807
* fix(utils.py): fix handling ollama response format param
Fixes https://github.com/BerriAI/litellm/issues/6848#issuecomment-2491215485
* docs(sidebars.js): refactor chat endpoint placement
* fix: fix linting errors
* test: fix test
* test: fix test
* fix(openai_like/handler): handle max retries
* fix(streaming_handler.py): fix streaming check for openai-compatible providers
* test: update test
* test: correctly handle model is overloaded error
* test: update test
* test: fix test
* test: mark flaky test
---------
Co-authored-by: Guowang Li <Guowang@users.noreply.github.com>
* fix(ollama.py): fix get model info request
Fixes https://github.com/BerriAI/litellm/issues/6703
* feat(anthropic/chat/transformation.py): support passing user id to anthropic via openai 'user' param
* docs(anthropic.md): document all supported openai params for anthropic
* test: fix tests
* fix: fix tests
* feat(jina_ai/): add rerank support
Closes https://github.com/BerriAI/litellm/issues/6691
* test: handle service unavailable error
* fix(handler.py): refactor together ai rerank call
* test: update test to handle overloaded error
* test: fix test
* Litellm router trace (#6742)
* feat(router.py): add trace_id to parent functions - allows tracking retry/fallbacks
* feat(router.py): log trace id across retry/fallback logic
allows grouping llm logs for the same request
* test: fix tests
* fix: fix test
* fix(transformation.py): only set non-none stop_sequences
* Litellm router disable fallbacks (#6743)
* bump: version 1.52.6 → 1.52.7
* feat(router.py): enable dynamically disabling fallbacks
Allows for enabling/disabling fallbacks per key
* feat(litellm_pre_call_utils.py): support setting 'disable_fallbacks' on litellm key
* test: fix test
* fix(exception_mapping_utils.py): map 'model is overloaded' to internal server error
* test: handle gemini error
* test: fix test
* fix: new run
* fix(utils.py): add 'disallowed_special' for token counting on .encode()
Fixes error when '<
endoftext
>' in string
* Revert "(fix) standard logging metadata + add unit testing (#6366)" (#6381)
This reverts commit 8359cb6fa9.
* add new 35 mode lcard (#6378)
* Add claude 3 5 sonnet 20241022 models for all provides (#6380)
* Add Claude 3.5 v2 on Amazon Bedrock and Vertex AI.
* added anthropic/claude-3-5-sonnet-20241022
* add new 35 mode lcard
---------
Co-authored-by: Paul Gauthier <paul@paulg.com>
Co-authored-by: lowjiansheng <15527690+lowjiansheng@users.noreply.github.com>
* test(skip-flaky-google-context-caching-test): google is not reliable. their sample code is also not working
* Fix metadata being overwritten in speech() (#6295)
* fix: adding missing redis cluster kwargs (#6318)
Co-authored-by: Ali Arian <ali.arian@breadfinancial.com>
* Add support for `max_completion_tokens` in Azure OpenAI (#6376)
Now that Azure supports `max_completion_tokens`, no need for special handling for this param and let it pass thru. More details: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models?tabs=python-secure#api-support
* build(model_prices_and_context_window.json): add voyage-finance-2 pricing
Closes https://github.com/BerriAI/litellm/issues/6371
* build(model_prices_and_context_window.json): fix llama3.1 pricing model name on map
Closes https://github.com/BerriAI/litellm/issues/6310
* feat(realtime_streaming.py): just log specific events
Closes https://github.com/BerriAI/litellm/issues/6267
* fix(utils.py): more robust checking if unmapped vertex anthropic model belongs to that family of models
Fixes https://github.com/BerriAI/litellm/issues/6383
* Fix Ollama stream handling for tool calls with None content (#6155)
* test(test_max_completions): update test now that azure supports 'max_completion_tokens'
* fix(handler.py): fix linting error
---------
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Low Jian Sheng <15527690+lowjiansheng@users.noreply.github.com>
Co-authored-by: David Manouchehri <david.manouchehri@ai.moda>
Co-authored-by: Paul Gauthier <paul@paulg.com>
Co-authored-by: John HU <hszqqq12@gmail.com>
Co-authored-by: Ali Arian <113945203+ali-arian@users.noreply.github.com>
Co-authored-by: Ali Arian <ali.arian@breadfinancial.com>
Co-authored-by: Anand Taralika <46954145+taralika@users.noreply.github.com>
Co-authored-by: Nolan Tremelling <34580718+NolanTrem@users.noreply.github.com>
* feat(custom_logger.py): expose new `async_dataset_hook` for modifying/rejecting argilla items before logging
Allows user more control on what gets logged to argilla for annotations
* feat(google_ai_studio_endpoints.py): add new `/azure/*` pass through route
enables pass-through for azure provider
* feat(utils.py): support checking ollama `/api/show` endpoint for retrieving ollama model info
Fixes https://github.com/BerriAI/litellm/issues/6322
* fix(user_api_key_auth.py): add `/key/delete` to an allowed_ui_routes
Fixes https://github.com/BerriAI/litellm/issues/6236
* fix(user_api_key_auth.py): remove type ignore
* fix(user_api_key_auth.py): route ui vs. api token checks differently
Fixes https://github.com/BerriAI/litellm/issues/6238
* feat(internal_user_endpoints.py): support setting models as a default internal user param
Closes https://github.com/BerriAI/litellm/issues/6239
* fix(user_api_key_auth.py): fix exception string
* fix(user_api_key_auth.py): fix error string
* fix: fix test
* Minor IAM AWS OIDC Improvements (#5246)
* AWS IAM: Temporary tokens are valid across all regions after being issued, so it is wasteful to request one for each region.
* AWS IAM: Include an inline policy, to help reduce misuse of overly permissive IAM roles.
* (test_bedrock_completion.py): Ensure we are testing cross AWS region OIDC flow.
* fix(router.py): log rejected requests
Fixes https://github.com/BerriAI/litellm/issues/5498
* refactor: don't use verbose_logger.exception, if exception is raised
User might already have handling for this. But alerting systems in prod will raise this as an unhandled error.
* fix(datadog.py): support setting datadog source as an env var
Fixes https://github.com/BerriAI/litellm/issues/5508
* docs(logging.md): add dd_source to datadog docs
* fix(proxy_server.py): expose `/customer/list` endpoint for showing all customers
* (bedrock): Fix usage with Cloudflare AI Gateway, and proxies in general. (#5509)
* feat(anthropic.py): support 'cache_control' param for content when it is a string
* Revert "(bedrock): Fix usage with Cloudflare AI Gateway, and proxies in gener…" (#5519)
This reverts commit 3fac0349c2.
* refactor: ci/cd run again
---------
Co-authored-by: David Manouchehri <david.manouchehri@ai.moda>
Some(?) models (eg, codegemma) don't return a prompt_eval_count field, so ollama.py tries to compute the value based on encoding of the prompt. Unfortunately FIM symbols used in the prompt (eg, "<|fim_prefix|>") cause the encoder to throw an exception, so we disable special processing.