* fix(azure/common_utils.py): check for azure tenant id, client id, client secret in env var
Fixes https://github.com/BerriAI/litellm/issues/9598#issuecomment-2801966027
* fix(azure/gpt_transformation.py): fix passing response_format to azure when api year = 2025
Fixes https://github.com/BerriAI/litellm/issues/9703
* test: monkeypatch azure api version in test
* test: update testing
* test: fix test
* test: update test
* docs(config_settings.md): document env vars
* fix(litellm_proxy/chat/transformation.py): support 'thinking' param
Fixes https://github.com/BerriAI/litellm/issues/9380
* feat(azure/gpt_transformation.py): add azure audio model support
Closes https://github.com/BerriAI/litellm/issues/6305
* fix(utils.py): use provider_config in common functions
* fix(utils.py): add missing provider configs to get_chat_provider_config
* test: fix test
* fix: fix path
* feat(utils.py): make bedrock invoke nova config baseconfig compatible
* fix: fix linting errors
* fix(azure_ai/transformation.py): remove buggy optional param filtering for azure ai
Removes incorrect check for support tool choice when calling azure ai - prevented calling models with response_format unless on litell model cost map
* fix(amazon_cohere_transformation.py): fix bedrock invoke cohere transformation to inherit from coherechatconfig
* test: fix azure ai tool choice mapping
* fix: fix model cost map to add 'supports_tool_choice' to cohere models
* fix(get_supported_openai_params.py): check if custom llm provider in llm providers
* fix(get_supported_openai_params.py): fix llm provider in list check
* fix: fix ruff check errors
* fix: support defs when calling bedrock nova
* fix(factory.py): fix test
* fix(anthropic_claude3_transformation.py): fix amazon anthropic claude 3 tool calling transformation on invoke route
move to using anthropic config as base
* fix(utils.py): expose anthropic config via providerconfigmanager
* fix(llm_http_handler.py): support json mode on async completion calls
* fix(invoke_handler/make_call): support json mode for anthropic called via bedrock invoke
* fix(anthropic/): handle 'response_format: {"type": "text"}` + migrate amazon claude 3 invoke config to inherit from anthropic config
Prevents error when passing in 'response_format: {"type": "text"}
* test: fix test
* fix(utils.py): fix base invoke provider check
* fix(anthropic_claude3_transformation.py): don't pass 'stream' param
* fix: fix linting errors
* fix(converse_transformation.py): handle response_format type=text for converse
* fix(o_series_transformation.py): fix optional param check for o-series models
o3-mini and o-1 do not support parallel tool calling
* fix(utils.py): support 'drop_params' for 'thinking' param across models
allows switching to older claude versions (or non-anthropic models) and param to be safely dropped
* fix: fix passing thinking param in optional params
allows dropping thinking_param where not applicable
* test: update old model
* fix(utils.py): fix linting errors
* fix(main.py): add param to acompletion
* fix(azure/chat/gpt_transformation.py): add 'prediction' as a support azure param
Closes https://github.com/BerriAI/litellm/issues/8500
* build(model_prices_and_context_window.json): add new 'gemini-2.0-pro-exp-02-05' model
* style: cleanup invalid json trailing commma
* feat(utils.py): support passing 'tokenizer_config' to register_prompt_template
enables passing complete tokenizer config of model to litellm
Allows calling deepseek on bedrock with the correct prompt template
* fix(utils.py): fix register_prompt_template for custom model names
* test(test_prompt_factory.py): fix test
* test(test_completion.py): add e2e test for bedrock invoke deepseek ft model
* feat(base_invoke_transformation.py): support hf_model_name param for bedrock invoke calls
enables proxy admin to set base model for ft bedrock deepseek model
* feat(bedrock/invoke): support deepseek_r1 route for bedrock
makes it easy to apply the right chat template to that call
* feat(constants.py): store deepseek r1 chat template - allow user to get correct response from deepseek r1 without extra work
* test(test_completion.py): add e2e mock test for bedrock deepseek
* docs(bedrock.md): document new deepseek_r1 route for bedrock
allows us to use the right config
* fix(exception_mapping_utils.py): catch read operation timeout
* fix(utils.py): fix vertex ai optional param handling
don't pass max retries to unsupported route
Fixes https://github.com/BerriAI/litellm/issues/8254
* fix(get_supported_openai_params.py): fix linting error
* fix(get_supported_openai_params.py): default to openai-like spec
* test: fix test
* fix: fix linting error
* Improved wildcard route handling on `/models` and `/model_group/info` (#8473)
* fix(model_checks.py): update returning known model from wildcard to filter based on given model prefix
ensures wildcard route - `vertex_ai/gemini-*` just returns known vertex_ai/gemini- models
* test(test_proxy_utils.py): add unit testing for new 'get_known_models_from_wildcard' helper
* test(test_models.py): add e2e testing for `/model_group/info` endpoint
* feat(prometheus.py): support tracking total requests by user_email on prometheus
adds initial support for tracking total requests by user_email
* test(test_prometheus.py): add testing to ensure user email is always tracked
* test: update testing for new prometheus metric
* test(test_prometheus_unit_tests.py): add user email to total proxy metric
* test: update tests
* test: fix spend tests
* test: fix test
* fix(pagerduty.py): fix linting error
* (Bug fix) - Using `include_usage` for /completions requests + unit testing (#8484)
* pass stream options (#8419)
* test_completion_streaming_usage_metrics
* test_text_completion_include_usage
---------
Co-authored-by: Kaushik Deka <55996465+Kaushikdkrikhanu@users.noreply.github.com>
* fix naming docker stable release
* build(model_prices_and_context_window.json): handle azure model update
* docs(token_auth.md): clarify scopes can be a list or comma separated string
* docs: fix docs
* add sonar pricings (#8476)
* add sonar pricings
* Update model_prices_and_context_window.json
* Update model_prices_and_context_window.json
* Update model_prices_and_context_window_backup.json
* update load testing script
* fix test_async_router_context_window_fallback
* pplx - fix supports tool choice openai param (#8496)
* fix prom check startup (#8492)
* test_async_router_context_window_fallback
* ci(config.yml): mark daily docker builds with `-nightly` (#8499)
Resolves https://github.com/BerriAI/litellm/discussions/8495
* (Redis Cluster) - Fixes for using redis cluster + pipeline (#8442)
* update RedisCluster creation
* update RedisClusterCache
* add redis ClusterCache
* update async_set_cache_pipeline
* cleanup redis cluster usage
* fix redis pipeline
* test_init_async_client_returns_same_instance
* fix redis cluster
* update mypy_path
* fix init_redis_cluster
* remove stub
* test redis commit
* ClusterPipeline
* fix import
* RedisCluster import
* fix redis cluster
* Potential fix for code scanning alert no. 2129: Clear-text logging of sensitive information
Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>
* fix naming of redis cluster integration
* test_redis_caching_ttl_pipeline
* fix async_set_cache_pipeline
---------
Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>
* Litellm UI stable version 02 12 2025 (#8497)
* fix(key_management_endpoints.py): fix `/key/list` to include `return_full_object` as a top-level query param
Allows user to specify they want the keys as a list of objects
* refactor(key_list.tsx): initial refactor of key table in user dashboard
offloads key filtering logic to backend api
prevents common error of user not being able to see their keys
* fix(key_management_endpoints.py): allow internal user to query `/key/list` to see their keys
* fix(key_management_endpoints.py): add validation checks and filtering to `/key/list` endpoint
allow internal user to see their keys. not anybody else's
* fix(view_key_table.tsx): fix issue where internal user could not see default team keys
* fix: fix linting error
* fix: fix linting error
* fix: fix linting error
* fix: fix linting error
* fix: fix linting error
* fix: fix linting error
* fix: fix linting error
* test_supports_tool_choice
* test_async_router_context_window_fallback
* fix: fix test (#8501)
* Litellm dev 02 12 2025 p1 (#8494)
* Resolves https://github.com/BerriAI/litellm/issues/6625 (#8459)
- enables no auth for SMTP
Signed-off-by: Regli Daniel <daniel.regli1@sanitas.com>
* add sonar pricings (#8476)
* add sonar pricings
* Update model_prices_and_context_window.json
* Update model_prices_and_context_window.json
* Update model_prices_and_context_window_backup.json
* test: fix test
---------
Signed-off-by: Regli Daniel <daniel.regli1@sanitas.com>
Co-authored-by: Dani Regli <1daniregli@gmail.com>
Co-authored-by: Lucca Zenóbio <luccazen@gmail.com>
* test: fix test
* UI Fixes p2 (#8502)
* refactor(admin.tsx): cleanup add new admin flow
removes buggy flow. Ensures just 1 simple way to add users / update roles.
* fix(user_search_modal.tsx): ensure 'add member' button is always visible
* fix(edit_membership.tsx): ensure 'save changes' button always visible
* fix(internal_user_endpoints.py): ensure user in org can be deleted
Fixes issue where user couldn't be deleted if they were a member of an org
* fix: fix linting error
* add phoenix docs for observability integration (#8522)
* Add files via upload
* Update arize_integration.md
* Update arize_integration.md
* add Phoenix docs
* Added custom_attributes to additional_keys which can be sent to athina (#8518)
* (UI) fix log details page (#8524)
* rollback changes to view logs page
* ui new build
* add interface for prefetch
* fix spread operation
* fix max size for request view page
* clean up table
* ui fix column on request logs page
* ui new build
* Add UI Support for Admins to Call /cache/ping and View Cache Analytics (#8475) (#8519)
* [Bug] UI: Newly created key does not display on the View Key Page (#8039)
- Fixed issue where all keys appeared blank for admin users.
- Implemented filtering of data via team settings to ensure all keys are displayed correctly.
* Fix:
- Updated the validator to allow model editing when `keyTeam.team_alias === "Default Team"`.
- Ensured other teams still follow the original validation rules.
* - added some classes in global.css
- added text wrap in output of request,response and metadata in index.tsx
- fixed styles of table in table.tsx
* - added full payload when we open single log entry
- added Combined Info Card in index.tsx
* fix: keys not showing on refresh for internal user
* merge
* main merge
* cache page
* ca remove
* terms change
* fix:places caching inside exp
---------
Signed-off-by: Regli Daniel <daniel.regli1@sanitas.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Kaushik Deka <55996465+Kaushikdkrikhanu@users.noreply.github.com>
Co-authored-by: Lucca Zenóbio <luccazen@gmail.com>
Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>
Co-authored-by: Dani Regli <1daniregli@gmail.com>
Co-authored-by: exiao <exiao@users.noreply.github.com>
Co-authored-by: vivek-athina <153479827+vivek-athina@users.noreply.github.com>
Co-authored-by: Taha Ali <123803932+tahaali-dev@users.noreply.github.com>
* fix(gemini/): support gemini 'frequency_penalty' and 'presence_penalty'
Closes https://github.com/BerriAI/litellm/issues/7748
* feat(proxy_server.py): new env var to disable prisma health check on startup
* test: fix test
* refactor(utils.py): migrate amazon titan config to base config
* refactor(utils.py): refactor bedrock meta invoke model translation to use base config
* refactor(utils.py): move bedrock ai21 to base config
* refactor(utils.py): move bedrock cohere to base config
* refactor(utils.py): move bedrock mistral to use base config
* refactor(utils.py): move all provider optional param translations to using a config
* docs(clientside_auth.md): clarify how to pass vertex region to litellm proxy
* fix(utils.py): handle scenario where custom llm provider is none / empty
* fix: fix get config
* test(test_otel_load_tests.py): widen perf margin
* fix(utils.py): fix get provider config check to handle custom llm's
* fix(utils.py): fix check
* fix(proxy_server.py): only update k,v pair if v is not empty/null
Fixes https://github.com/BerriAI/litellm/issues/6787
* test(test_router.py): cleanup duplicate calls
* test: add new test stream options drop params test
* test: update optional params / stream options test to test for vertex ai mistral route specifically
Addresses https://github.com/BerriAI/litellm/issues/7309
* fix(proxy_server.py): fix linting errors
* fix: fix linting errors
* fix use new format for Cohere config
* fix base llm http handler
* Litellm code qa common config (#7116)
* feat(base_llm): initial commit for common base config class
Addresses code qa critique https://github.com/andrewyng/aisuite/issues/113#issuecomment-2512369132
* feat(base_llm/): add transform request/response abstract methods to base config class
---------
Co-authored-by: Krrish Dholakia <krrishdholakia@gmail.com>
* use base transform helpers
* use base_llm_http_handler for cohere
* working cohere using base llm handler
* add async cohere chat completion support on base handler
* fix completion code
* working sync cohere stream
* add async support cohere_chat
* fix types get_model_response_iterator
* async / sync tests cohere
* feat cohere using base llm class
* fix linting errors
* fix _abc error
* add cohere params to transformation
* remove old cohere file
* fix type error
* fix merge conflicts
* fix cohere merge conflicts
* fix linting error
* fix litellm.llms.custom_httpx.http_handler.HTTPHandler.post
* fix passing cohere specific params
---------
Co-authored-by: Krrish Dholakia <krrishdholakia@gmail.com>
* Fix Vertex AI function calling invoke: use JSON format instead of protobuf text format. (#6702)
* test: test tool_call conversion when arguments is empty dict
Fixes https://github.com/BerriAI/litellm/issues/6833
* fix(openai_like/handler.py): return more descriptive error message
Fixes https://github.com/BerriAI/litellm/issues/6812
* test: skip overloaded model
* docs(anthropic.md): update anthropic docs to show how to route to any new model
* feat(groq/): fake stream when 'response_format' param is passed
Groq doesn't support streaming when response_format is set
* feat(groq/): add response_format support for groq
Closes https://github.com/BerriAI/litellm/issues/6845
* fix(o1_handler.py): remove fake streaming for o1
Closes https://github.com/BerriAI/litellm/issues/6801
* build(model_prices_and_context_window.json): add groq llama3.2b model pricing
Closes https://github.com/BerriAI/litellm/issues/6807
* fix(utils.py): fix handling ollama response format param
Fixes https://github.com/BerriAI/litellm/issues/6848#issuecomment-2491215485
* docs(sidebars.js): refactor chat endpoint placement
* fix: fix linting errors
* test: fix test
* test: fix test
* fix(openai_like/handler): handle max retries
* fix(streaming_handler.py): fix streaming check for openai-compatible providers
* test: update test
* test: correctly handle model is overloaded error
* test: update test
* test: fix test
* test: mark flaky test
---------
Co-authored-by: Guowang Li <Guowang@users.noreply.github.com>
* fix(anthropic/chat/transformation.py): add json schema as values: json_schema
fixes passing pydantic obj to anthropic
Fixes https://github.com/BerriAI/litellm/issues/6766
* (feat): Add timestamp_granularities parameter to transcription API (#6457)
* Add timestamp_granularities parameter to transcription API
* add param to the local test
* fix(databricks/chat.py): handle max_retries optional param handling for openai-like calls
Fixes issue with calling finetuned vertex ai models via databricks route
* build(ui/): add team admins via proxy ui
* fix: fix linting error
* test: fix test
* docs(vertex.md): refactor docs
* test: handle overloaded anthropic model error
* test: remove duplicate test
* test: fix test
* test: update test to handle model overloaded error
---------
Co-authored-by: Show <35062952+BrunooShow@users.noreply.github.com>
* fix(ollama.py): fix get model info request
Fixes https://github.com/BerriAI/litellm/issues/6703
* feat(anthropic/chat/transformation.py): support passing user id to anthropic via openai 'user' param
* docs(anthropic.md): document all supported openai params for anthropic
* test: fix tests
* fix: fix tests
* feat(jina_ai/): add rerank support
Closes https://github.com/BerriAI/litellm/issues/6691
* test: handle service unavailable error
* fix(handler.py): refactor together ai rerank call
* test: update test to handle overloaded error
* test: fix test
* Litellm router trace (#6742)
* feat(router.py): add trace_id to parent functions - allows tracking retry/fallbacks
* feat(router.py): log trace id across retry/fallback logic
allows grouping llm logs for the same request
* test: fix tests
* fix: fix test
* fix(transformation.py): only set non-none stop_sequences
* Litellm router disable fallbacks (#6743)
* bump: version 1.52.6 → 1.52.7
* feat(router.py): enable dynamically disabling fallbacks
Allows for enabling/disabling fallbacks per key
* feat(litellm_pre_call_utils.py): support setting 'disable_fallbacks' on litellm key
* test: fix test
* fix(exception_mapping_utils.py): map 'model is overloaded' to internal server error
* test: handle gemini error
* test: fix test
* fix: new run
* feat: initial commit for watsonx chat endpoint support
Closes https://github.com/BerriAI/litellm/issues/6562
* feat(watsonx/chat/handler.py): support tool calling for watsonx
Closes https://github.com/BerriAI/litellm/issues/6562
* fix(streaming_utils.py): return empty chunk instead of failing if streaming value is invalid dict
ensures streaming works for ibm watsonx
* fix(openai_like/chat/handler.py): ensure asynchttphandler is passed correctly for openai like calls
* fix: ensure exception mapping works well for watsonx calls
* fix(openai_like/chat/handler.py): handle async streaming correctly
* feat(main.py): Make it clear when a user is passing an invalid message
add validation for user content message
Closes https://github.com/BerriAI/litellm/issues/6565
* fix: cleanup
* fix(utils.py): loosen validation check, to just make sure content types are valid
make litellm robust to future content updates
* fix: fix linting erro
* fix: fix linting errors
* fix(utils.py): make validation check more flexible
* test: handle langfuse list index out of range error
* Litellm dev 11 02 2024 (#6561)
* fix(dual_cache.py): update in-memory check for redis batch get cache
Fixes latency delay for async_batch_redis_cache
* fix(service_logger.py): fix race condition causing otel service logging to be overwritten if service_callbacks set
* feat(user_api_key_auth.py): add parent otel component for auth
allows us to isolate how much latency is added by auth checks
* perf(parallel_request_limiter.py): move async_set_cache_pipeline (from max parallel request limiter) out of execution path (background task)
reduces latency by 200ms
* feat(user_api_key_auth.py): have user api key auth object return user tpm/rpm limits - reduces redis calls in downstream task (parallel_request_limiter)
Reduces latency by 400-800ms
* fix(parallel_request_limiter.py): use batch get cache to reduce user/key/team usage object calls
reduces latency by 50-100ms
* fix: fix linting error
* fix(_service_logger.py): fix import
* fix(user_api_key_auth.py): fix service logging
* fix(dual_cache.py): don't pass 'self'
* fix: fix python3.8 error
* fix: fix init]
* bump: version 1.51.4 → 1.51.5
* build(deps): bump cookie and express in /docs/my-website (#6566)
Bumps [cookie](https://github.com/jshttp/cookie) and [express](https://github.com/expressjs/express). These dependencies needed to be updated together.
Updates `cookie` from 0.6.0 to 0.7.1
- [Release notes](https://github.com/jshttp/cookie/releases)
- [Commits](https://github.com/jshttp/cookie/compare/v0.6.0...v0.7.1)
Updates `express` from 4.20.0 to 4.21.1
- [Release notes](https://github.com/expressjs/express/releases)
- [Changelog](https://github.com/expressjs/express/blob/4.21.1/History.md)
- [Commits](https://github.com/expressjs/express/compare/4.20.0...4.21.1)
---
updated-dependencies:
- dependency-name: cookie
dependency-type: indirect
- dependency-name: express
dependency-type: indirect
...
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
* docs(virtual_keys.md): update Dockerfile reference (#6554)
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
* (proxy fix) - call connect on prisma client when running setup (#6534)
* critical fix - call connect on prisma client when running setup
* fix test_proxy_server_prisma_setup
* fix test_proxy_server_prisma_setup
* Add 3.5 haiku (#6588)
* feat: add claude-3-5-haiku-20241022 entries
* feat: add claude-3-5-haiku-20241022 and vertex_ai/claude-3-5-haiku@20241022 models
* add missing entries, remove vision
* remove image token costs
* Litellm perf improvements 3 (#6573)
* perf: move writing key to cache, to background task
* perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils
adds 200ms on calls with pgdb connected
* fix(litellm_pre_call_utils.py'): rename call_type to actual call used
* perf(proxy_server.py): remove db logic from _get_config_from_file
was causing db calls to occur on every llm request, if team_id was set on key
* fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db
reduces latency/call by ~100ms
* fix(proxy_server.py): minor fix on existing_settings not incl alerting
* fix(exception_mapping_utils.py): map databricks exception string
* fix(auth_checks.py): fix auth check logic
* test: correctly mark flaky test
* fix(utils.py): handle auth token error for tokenizers.from_pretrained
* build: fix map
* build: fix map
* build: fix json for model map
* Litellm dev 11 02 2024 (#6561)
* fix(dual_cache.py): update in-memory check for redis batch get cache
Fixes latency delay for async_batch_redis_cache
* fix(service_logger.py): fix race condition causing otel service logging to be overwritten if service_callbacks set
* feat(user_api_key_auth.py): add parent otel component for auth
allows us to isolate how much latency is added by auth checks
* perf(parallel_request_limiter.py): move async_set_cache_pipeline (from max parallel request limiter) out of execution path (background task)
reduces latency by 200ms
* feat(user_api_key_auth.py): have user api key auth object return user tpm/rpm limits - reduces redis calls in downstream task (parallel_request_limiter)
Reduces latency by 400-800ms
* fix(parallel_request_limiter.py): use batch get cache to reduce user/key/team usage object calls
reduces latency by 50-100ms
* fix: fix linting error
* fix(_service_logger.py): fix import
* fix(user_api_key_auth.py): fix service logging
* fix(dual_cache.py): don't pass 'self'
* fix: fix python3.8 error
* fix: fix init]
* Litellm perf improvements 3 (#6573)
* perf: move writing key to cache, to background task
* perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils
adds 200ms on calls with pgdb connected
* fix(litellm_pre_call_utils.py'): rename call_type to actual call used
* perf(proxy_server.py): remove db logic from _get_config_from_file
was causing db calls to occur on every llm request, if team_id was set on key
* fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db
reduces latency/call by ~100ms
* fix(proxy_server.py): minor fix on existing_settings not incl alerting
* fix(exception_mapping_utils.py): map databricks exception string
* fix(auth_checks.py): fix auth check logic
* test: correctly mark flaky test
* fix(utils.py): handle auth token error for tokenizers.from_pretrained
* fix ImageObject conversion (#6584)
* (fix) litellm.text_completion raises a non-blocking error on simple usage (#6546)
* unit test test_huggingface_text_completion_logprobs
* fix return TextCompletionHandler convert_chat_to_text_completion
* fix hf rest api
* fix test_huggingface_text_completion_logprobs
* fix linting errors
* fix importLiteLLMResponseObjectHandler
* fix test for LiteLLMResponseObjectHandler
* fix test text completion
* fix allow using 15 seconds for premium license check
* testing fix bedrock deprecated cohere.command-text-v14
* (feat) add `Predicted Outputs` for OpenAI (#6594)
* bump openai to openai==1.54.0
* add 'prediction' param
* testing fix bedrock deprecated cohere.command-text-v14
* test test_openai_prediction_param.py
* test_openai_prediction_param_with_caching
* doc Predicted Outputs
* doc Predicted Output
* (fix) Vertex Improve Performance when using `image_url` (#6593)
* fix transformation vertex
* test test_process_gemini_image
* test_image_completion_request
* testing fix - bedrock has deprecated cohere.command-text-v14
* fix vertex pdf
* bump: version 1.51.5 → 1.52.0
* fix(lowest_tpm_rpm_routing.py): fix parallel rate limit check (#6577)
* fix(lowest_tpm_rpm_routing.py): fix parallel rate limit check
* fix(lowest_tpm_rpm_v2.py): return headers in correct format
* test: update test
* build(deps): bump cookie and express in /docs/my-website (#6566)
Bumps [cookie](https://github.com/jshttp/cookie) and [express](https://github.com/expressjs/express). These dependencies needed to be updated together.
Updates `cookie` from 0.6.0 to 0.7.1
- [Release notes](https://github.com/jshttp/cookie/releases)
- [Commits](https://github.com/jshttp/cookie/compare/v0.6.0...v0.7.1)
Updates `express` from 4.20.0 to 4.21.1
- [Release notes](https://github.com/expressjs/express/releases)
- [Changelog](https://github.com/expressjs/express/blob/4.21.1/History.md)
- [Commits](https://github.com/expressjs/express/compare/4.20.0...4.21.1)
---
updated-dependencies:
- dependency-name: cookie
dependency-type: indirect
- dependency-name: express
dependency-type: indirect
...
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
* docs(virtual_keys.md): update Dockerfile reference (#6554)
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
* (proxy fix) - call connect on prisma client when running setup (#6534)
* critical fix - call connect on prisma client when running setup
* fix test_proxy_server_prisma_setup
* fix test_proxy_server_prisma_setup
* Add 3.5 haiku (#6588)
* feat: add claude-3-5-haiku-20241022 entries
* feat: add claude-3-5-haiku-20241022 and vertex_ai/claude-3-5-haiku@20241022 models
* add missing entries, remove vision
* remove image token costs
* Litellm perf improvements 3 (#6573)
* perf: move writing key to cache, to background task
* perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils
adds 200ms on calls with pgdb connected
* fix(litellm_pre_call_utils.py'): rename call_type to actual call used
* perf(proxy_server.py): remove db logic from _get_config_from_file
was causing db calls to occur on every llm request, if team_id was set on key
* fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db
reduces latency/call by ~100ms
* fix(proxy_server.py): minor fix on existing_settings not incl alerting
* fix(exception_mapping_utils.py): map databricks exception string
* fix(auth_checks.py): fix auth check logic
* test: correctly mark flaky test
* fix(utils.py): handle auth token error for tokenizers.from_pretrained
* build: fix map
* build: fix map
* build: fix json for model map
* test: remove eol model
* fix(proxy_server.py): fix db config loading logic
* fix(proxy_server.py): fix order of config / db updates, to ensure fields not overwritten
* test: skip test if required env var is missing
* test: fix test
---------
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: paul-gauthier <69695708+paul-gauthier@users.noreply.github.com>
* test: mark flaky test
* test: handle anthropic api instability
* test: update test
* test: bump num retries on langfuse tests - their api is quite bad
---------
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: paul-gauthier <69695708+paul-gauthier@users.noreply.github.com>
* refactor: move gemini translation logic inside the transformation.py file
easier to isolate the gemini translation logic
* fix(gemini-transformation): support multiple tool calls in message body
Merges https://github.com/BerriAI/litellm/pull/6487/files
* test(test_vertex.py): add remaining tests from https://github.com/BerriAI/litellm/pull/6487
* fix(gemini-transformation): return tool calls for multiple tool calls
* fix: support passing logprobs param for vertex + gemini
* feat(vertex_ai): add logprobs support for gemini calls
* fix(anthropic/chat/transformation.py): fix disable parallel tool use flag
* fix: fix linting error
* fix(_logging.py): log stacktrace information in json logs
Closes https://github.com/BerriAI/litellm/issues/6497
* fix(utils.py): fix mem leak for async stream + completion
Uses a global executor pool instead of creating a new thread on each request
Fixes https://github.com/BerriAI/litellm/issues/6404
* fix(factory.py): handle tool call + content in assistant message for bedrock
* fix: fix import
* fix(factory.py): maintain support for content as a str in assistant response
* fix: fix import
* test: cleanup test
* fix(vertex_and_google_ai_studio/): return none for content if no str value
* test: retry flaky tests
* (UI) Fix viewing members, keys in a team + added testing (#6514)
* fix listing teams on ui
* LiteLLM Minor Fixes & Improvements (10/28/2024) (#6475)
* fix(anthropic/chat/transformation.py): support anthropic disable_parallel_tool_use param
Fixes https://github.com/BerriAI/litellm/issues/6456
* feat(anthropic/chat/transformation.py): support anthropic computer tool use
Closes https://github.com/BerriAI/litellm/issues/6427
* fix(vertex_ai/common_utils.py): parse out '$schema' when calling vertex ai
Fixes issue when trying to call vertex from vercel sdk
* fix(main.py): add 'extra_headers' support for azure on all translation endpoints
Fixes https://github.com/BerriAI/litellm/issues/6465
* fix: fix linting errors
* fix(transformation.py): handle no beta headers for anthropic
* test: cleanup test
* fix: fix linting error
* fix: fix linting errors
* fix: fix linting errors
* fix(transformation.py): handle dummy tool call
* fix(main.py): fix linting error
* fix(azure.py): pass required param
* LiteLLM Minor Fixes & Improvements (10/24/2024) (#6441)
* fix(azure.py): handle /openai/deployment in azure api base
* fix(factory.py): fix faulty anthropic tool result translation check
Fixes https://github.com/BerriAI/litellm/issues/6422
* fix(gpt_transformation.py): add support for parallel_tool_calls to azure
Fixes https://github.com/BerriAI/litellm/issues/6440
* fix(factory.py): support anthropic prompt caching for tool results
* fix(vertex_ai/common_utils): don't pop non-null required field
Fixes https://github.com/BerriAI/litellm/issues/6426
* feat(vertex_ai.py): support code_execution tool call for vertex ai + gemini
Closes https://github.com/BerriAI/litellm/issues/6434
* build(model_prices_and_context_window.json): Add 'supports_assistant_prefill' for bedrock claude-3-5-sonnet v2 models
Closes https://github.com/BerriAI/litellm/issues/6437
* fix(types/utils.py): fix linting
* test: update test to include required fields
* test: fix test
* test: handle flaky test
* test: remove e2e test - hitting gemini rate limits
* Litellm dev 10 26 2024 (#6472)
* docs(exception_mapping.md): add missing exception types
Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183
* fix(main.py): register custom model pricing with specific key
Ensure custom model pricing is registered to the specific model+provider key combination
* test: make testing more robust for custom pricing
* fix(redis_cache.py): instrument otel logging for sync redis calls
ensures complete coverage for all redis cache calls
* (Testing) Add unit testing for DualCache - ensure in memory cache is used when expected (#6471)
* test test_dual_cache_get_set
* unit testing for dual cache
* fix async_set_cache_sadd
* test_dual_cache_local_only
* redis otel tracing + async support for latency routing (#6452)
* docs(exception_mapping.md): add missing exception types
Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183
* fix(main.py): register custom model pricing with specific key
Ensure custom model pricing is registered to the specific model+provider key combination
* test: make testing more robust for custom pricing
* fix(redis_cache.py): instrument otel logging for sync redis calls
ensures complete coverage for all redis cache calls
* refactor: pass parent_otel_span for redis caching calls in router
allows for more observability into what calls are causing latency issues
* test: update tests with new params
* refactor: ensure e2e otel tracing for router
* refactor(router.py): add more otel tracing acrosss router
catch all latency issues for router requests
* fix: fix linting error
* fix(router.py): fix linting error
* fix: fix test
* test: fix tests
* fix(dual_cache.py): pass ttl to redis cache
* fix: fix param
* fix(dual_cache.py): set default value for parent_otel_span
* fix(transformation.py): support 'response_format' for anthropic calls
* fix(transformation.py): check for cache_control inside 'function' block
* fix: fix linting error
* fix: fix linting errors
---------
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
---------
Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>
* ui new build
* Add retry strat (#6520)
Signed-off-by: dbczumar <corey.zumar@databricks.com>
* (fix) slack alerting - don't spam the failed cost tracking alert for the same model (#6543)
* fix use failing_model as cache key for failed_tracking_alert
* fix use standard logging payload for getting response cost
* fix kwargs.get("response_cost")
* fix getting response cost
* (feat) add XAI ChatCompletion Support (#6373)
* init commit for XAI
* add full logic for xai chat completion
* test_completion_xai
* docs xAI
* add xai/grok-beta
* test_xai_chat_config_get_openai_compatible_provider_info
* test_xai_chat_config_map_openai_params
* add xai streaming test
---------
Signed-off-by: dbczumar <corey.zumar@databricks.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Corey Zumar <39497902+dbczumar@users.noreply.github.com>
* fix listing teams on ui
* LiteLLM Minor Fixes & Improvements (10/28/2024) (#6475)
* fix(anthropic/chat/transformation.py): support anthropic disable_parallel_tool_use param
Fixes https://github.com/BerriAI/litellm/issues/6456
* feat(anthropic/chat/transformation.py): support anthropic computer tool use
Closes https://github.com/BerriAI/litellm/issues/6427
* fix(vertex_ai/common_utils.py): parse out '$schema' when calling vertex ai
Fixes issue when trying to call vertex from vercel sdk
* fix(main.py): add 'extra_headers' support for azure on all translation endpoints
Fixes https://github.com/BerriAI/litellm/issues/6465
* fix: fix linting errors
* fix(transformation.py): handle no beta headers for anthropic
* test: cleanup test
* fix: fix linting error
* fix: fix linting errors
* fix: fix linting errors
* fix(transformation.py): handle dummy tool call
* fix(main.py): fix linting error
* fix(azure.py): pass required param
* LiteLLM Minor Fixes & Improvements (10/24/2024) (#6441)
* fix(azure.py): handle /openai/deployment in azure api base
* fix(factory.py): fix faulty anthropic tool result translation check
Fixes https://github.com/BerriAI/litellm/issues/6422
* fix(gpt_transformation.py): add support for parallel_tool_calls to azure
Fixes https://github.com/BerriAI/litellm/issues/6440
* fix(factory.py): support anthropic prompt caching for tool results
* fix(vertex_ai/common_utils): don't pop non-null required field
Fixes https://github.com/BerriAI/litellm/issues/6426
* feat(vertex_ai.py): support code_execution tool call for vertex ai + gemini
Closes https://github.com/BerriAI/litellm/issues/6434
* build(model_prices_and_context_window.json): Add 'supports_assistant_prefill' for bedrock claude-3-5-sonnet v2 models
Closes https://github.com/BerriAI/litellm/issues/6437
* fix(types/utils.py): fix linting
* test: update test to include required fields
* test: fix test
* test: handle flaky test
* test: remove e2e test - hitting gemini rate limits
* Litellm dev 10 26 2024 (#6472)
* docs(exception_mapping.md): add missing exception types
Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183
* fix(main.py): register custom model pricing with specific key
Ensure custom model pricing is registered to the specific model+provider key combination
* test: make testing more robust for custom pricing
* fix(redis_cache.py): instrument otel logging for sync redis calls
ensures complete coverage for all redis cache calls
* (Testing) Add unit testing for DualCache - ensure in memory cache is used when expected (#6471)
* test test_dual_cache_get_set
* unit testing for dual cache
* fix async_set_cache_sadd
* test_dual_cache_local_only
* redis otel tracing + async support for latency routing (#6452)
* docs(exception_mapping.md): add missing exception types
Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183
* fix(main.py): register custom model pricing with specific key
Ensure custom model pricing is registered to the specific model+provider key combination
* test: make testing more robust for custom pricing
* fix(redis_cache.py): instrument otel logging for sync redis calls
ensures complete coverage for all redis cache calls
* refactor: pass parent_otel_span for redis caching calls in router
allows for more observability into what calls are causing latency issues
* test: update tests with new params
* refactor: ensure e2e otel tracing for router
* refactor(router.py): add more otel tracing acrosss router
catch all latency issues for router requests
* fix: fix linting error
* fix(router.py): fix linting error
* fix: fix test
* test: fix tests
* fix(dual_cache.py): pass ttl to redis cache
* fix: fix param
* fix(dual_cache.py): set default value for parent_otel_span
* fix(transformation.py): support 'response_format' for anthropic calls
* fix(transformation.py): check for cache_control inside 'function' block
* fix: fix linting error
* fix: fix linting errors
---------
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
---------
Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>
* fix(core_helpers.py): return None, instead of raising kwargs is None error
Closes https://github.com/BerriAI/litellm/issues/6500
* docs(cost_tracking.md): cleanup doc
* fix(vertex_and_google_ai_studio.py): handle function call with no params passed in
Closes https://github.com/BerriAI/litellm/issues/6495
* test(test_router_timeout.py): add test for router timeout + retry logic
* test: update test to use module level values
* (fix) Prometheus - Log Postgres DB latency, status on prometheus (#6484)
* fix logging DB fails on prometheus
* unit testing log to otel wrapper
* unit testing for service logger + prometheus
* use LATENCY buckets for service logging
* fix service logging
* docs clarify vertex vs gemini
* (router_strategy/) ensure all async functions use async cache methods (#6489)
* fix router strat
* use async set / get cache in router_strategy
* add coverage for router strategy
* fix imports
* fix batch_get_cache
* use async methods for least busy
* fix least busy use async methods
* fix test_dual_cache_increment
* test async_get_available_deployment when routing_strategy="least-busy"
* (fix) proxy - fix when `STORE_MODEL_IN_DB` should be set (#6492)
* set store_model_in_db at the top
* correctly use store_model_in_db global
* (fix) `PrometheusServicesLogger` `_get_metric` should return metric in Registry (#6486)
* fix logging DB fails on prometheus
* unit testing log to otel wrapper
* unit testing for service logger + prometheus
* use LATENCY buckets for service logging
* fix service logging
* fix _get_metric in prom services logger
* add clear doc string
* unit testing for prom service logger
* bump: version 1.51.0 → 1.51.1
* Add `azure/gpt-4o-mini-2024-07-18` to model_prices_and_context_window.json (#6477)
* Update utils.py (#6468)
Fixed missing keys
* (perf) Litellm redis router fix - ~100ms improvement (#6483)
* docs(exception_mapping.md): add missing exception types
Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183
* fix(main.py): register custom model pricing with specific key
Ensure custom model pricing is registered to the specific model+provider key combination
* test: make testing more robust for custom pricing
* fix(redis_cache.py): instrument otel logging for sync redis calls
ensures complete coverage for all redis cache calls
* refactor: pass parent_otel_span for redis caching calls in router
allows for more observability into what calls are causing latency issues
* test: update tests with new params
* refactor: ensure e2e otel tracing for router
* refactor(router.py): add more otel tracing acrosss router
catch all latency issues for router requests
* fix: fix linting error
* fix(router.py): fix linting error
* fix: fix test
* test: fix tests
* fix(dual_cache.py): pass ttl to redis cache
* fix: fix param
* perf(cooldown_cache.py): improve cooldown cache, to store cache results in memory for 5s, prevents redis call from being made on each request
reduces 100ms latency per call with caching enabled on router
* fix: fix test
* fix(cooldown_cache.py): handle if a result is None
* fix(cooldown_cache.py): add debug statements
* refactor(dual_cache.py): move to using an in-memory check for batch get cache, to prevent redis from being hit for every call
* fix(cooldown_cache.py): fix linting erropr
* refactor(prometheus.py): move to using standard logging payload for reading the remaining request / tokens
Ensures prometheus token tracking works for anthropic as well
* fix: fix linting error
* fix(redis_cache.py): make sure ttl is always int (handle float values)
Fixes issue where redis_client.ex was not working correctly due to float ttl
* fix: fix linting error
* test: update test
* fix: fix linting error
---------
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Xingyao Wang <xingyao@all-hands.dev>
Co-authored-by: vibhanshu-ob <115142120+vibhanshu-ob@users.noreply.github.com>
* fix(anthropic/chat/transformation.py): support anthropic disable_parallel_tool_use param
Fixes https://github.com/BerriAI/litellm/issues/6456
* feat(anthropic/chat/transformation.py): support anthropic computer tool use
Closes https://github.com/BerriAI/litellm/issues/6427
* fix(vertex_ai/common_utils.py): parse out '$schema' when calling vertex ai
Fixes issue when trying to call vertex from vercel sdk
* fix(main.py): add 'extra_headers' support for azure on all translation endpoints
Fixes https://github.com/BerriAI/litellm/issues/6465
* fix: fix linting errors
* fix(transformation.py): handle no beta headers for anthropic
* test: cleanup test
* fix: fix linting error
* fix: fix linting errors
* fix: fix linting errors
* fix(transformation.py): handle dummy tool call
* fix(main.py): fix linting error
* fix(azure.py): pass required param
* LiteLLM Minor Fixes & Improvements (10/24/2024) (#6441)
* fix(azure.py): handle /openai/deployment in azure api base
* fix(factory.py): fix faulty anthropic tool result translation check
Fixes https://github.com/BerriAI/litellm/issues/6422
* fix(gpt_transformation.py): add support for parallel_tool_calls to azure
Fixes https://github.com/BerriAI/litellm/issues/6440
* fix(factory.py): support anthropic prompt caching for tool results
* fix(vertex_ai/common_utils): don't pop non-null required field
Fixes https://github.com/BerriAI/litellm/issues/6426
* feat(vertex_ai.py): support code_execution tool call for vertex ai + gemini
Closes https://github.com/BerriAI/litellm/issues/6434
* build(model_prices_and_context_window.json): Add 'supports_assistant_prefill' for bedrock claude-3-5-sonnet v2 models
Closes https://github.com/BerriAI/litellm/issues/6437
* fix(types/utils.py): fix linting
* test: update test to include required fields
* test: fix test
* test: handle flaky test
* test: remove e2e test - hitting gemini rate limits
* Litellm dev 10 26 2024 (#6472)
* docs(exception_mapping.md): add missing exception types
Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183
* fix(main.py): register custom model pricing with specific key
Ensure custom model pricing is registered to the specific model+provider key combination
* test: make testing more robust for custom pricing
* fix(redis_cache.py): instrument otel logging for sync redis calls
ensures complete coverage for all redis cache calls
* (Testing) Add unit testing for DualCache - ensure in memory cache is used when expected (#6471)
* test test_dual_cache_get_set
* unit testing for dual cache
* fix async_set_cache_sadd
* test_dual_cache_local_only
* redis otel tracing + async support for latency routing (#6452)
* docs(exception_mapping.md): add missing exception types
Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183
* fix(main.py): register custom model pricing with specific key
Ensure custom model pricing is registered to the specific model+provider key combination
* test: make testing more robust for custom pricing
* fix(redis_cache.py): instrument otel logging for sync redis calls
ensures complete coverage for all redis cache calls
* refactor: pass parent_otel_span for redis caching calls in router
allows for more observability into what calls are causing latency issues
* test: update tests with new params
* refactor: ensure e2e otel tracing for router
* refactor(router.py): add more otel tracing acrosss router
catch all latency issues for router requests
* fix: fix linting error
* fix(router.py): fix linting error
* fix: fix test
* test: fix tests
* fix(dual_cache.py): pass ttl to redis cache
* fix: fix param
* fix(dual_cache.py): set default value for parent_otel_span
* fix(transformation.py): support 'response_format' for anthropic calls
* fix(transformation.py): check for cache_control inside 'function' block
* fix: fix linting error
* fix: fix linting errors
---------
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
* fix(azure.py): handle /openai/deployment in azure api base
* fix(factory.py): fix faulty anthropic tool result translation check
Fixes https://github.com/BerriAI/litellm/issues/6422
* fix(gpt_transformation.py): add support for parallel_tool_calls to azure
Fixes https://github.com/BerriAI/litellm/issues/6440
* fix(factory.py): support anthropic prompt caching for tool results
* fix(vertex_ai/common_utils): don't pop non-null required field
Fixes https://github.com/BerriAI/litellm/issues/6426
* feat(vertex_ai.py): support code_execution tool call for vertex ai + gemini
Closes https://github.com/BerriAI/litellm/issues/6434
* build(model_prices_and_context_window.json): Add 'supports_assistant_prefill' for bedrock claude-3-5-sonnet v2 models
Closes https://github.com/BerriAI/litellm/issues/6437
* fix(types/utils.py): fix linting
* test: update test to include required fields
* test: fix test
* test: handle flaky test
* test: remove e2e test - hitting gemini rate limits
* fix(utils.py): add 'disallowed_special' for token counting on .encode()
Fixes error when '<
endoftext
>' in string
* Revert "(fix) standard logging metadata + add unit testing (#6366)" (#6381)
This reverts commit 8359cb6fa9.
* add new 35 mode lcard (#6378)
* Add claude 3 5 sonnet 20241022 models for all provides (#6380)
* Add Claude 3.5 v2 on Amazon Bedrock and Vertex AI.
* added anthropic/claude-3-5-sonnet-20241022
* add new 35 mode lcard
---------
Co-authored-by: Paul Gauthier <paul@paulg.com>
Co-authored-by: lowjiansheng <15527690+lowjiansheng@users.noreply.github.com>
* test(skip-flaky-google-context-caching-test): google is not reliable. their sample code is also not working
* Fix metadata being overwritten in speech() (#6295)
* fix: adding missing redis cluster kwargs (#6318)
Co-authored-by: Ali Arian <ali.arian@breadfinancial.com>
* Add support for `max_completion_tokens` in Azure OpenAI (#6376)
Now that Azure supports `max_completion_tokens`, no need for special handling for this param and let it pass thru. More details: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models?tabs=python-secure#api-support
* build(model_prices_and_context_window.json): add voyage-finance-2 pricing
Closes https://github.com/BerriAI/litellm/issues/6371
* build(model_prices_and_context_window.json): fix llama3.1 pricing model name on map
Closes https://github.com/BerriAI/litellm/issues/6310
* feat(realtime_streaming.py): just log specific events
Closes https://github.com/BerriAI/litellm/issues/6267
* fix(utils.py): more robust checking if unmapped vertex anthropic model belongs to that family of models
Fixes https://github.com/BerriAI/litellm/issues/6383
* Fix Ollama stream handling for tool calls with None content (#6155)
* test(test_max_completions): update test now that azure supports 'max_completion_tokens'
* fix(handler.py): fix linting error
---------
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Low Jian Sheng <15527690+lowjiansheng@users.noreply.github.com>
Co-authored-by: David Manouchehri <david.manouchehri@ai.moda>
Co-authored-by: Paul Gauthier <paul@paulg.com>
Co-authored-by: John HU <hszqqq12@gmail.com>
Co-authored-by: Ali Arian <113945203+ali-arian@users.noreply.github.com>
Co-authored-by: Ali Arian <ali.arian@breadfinancial.com>
Co-authored-by: Anand Taralika <46954145+taralika@users.noreply.github.com>
Co-authored-by: Nolan Tremelling <34580718+NolanTrem@users.noreply.github.com>
* feat(together_ai/completion): handle together ai completion calls
* fix: handle list of int / list of list of int for text completion calls
* fix(utils.py): check if base model in bedrock converse model list
Fixes https://github.com/BerriAI/litellm/issues/6003
* test(test_optional_params.py): add unit tests for bedrock optional param mapping
Fixes https://github.com/BerriAI/litellm/issues/6003
* feat(utils.py): enable passing dummy tool call for anthropic/bedrock calls if tool_use blocks exist
Fixes https://github.com/BerriAI/litellm/issues/5388
* fixed an issue with tool use of claude models with anthropic and bedrock (#6013)
* fix(utils.py): handle empty schema for anthropic/bedrock
Fixes https://github.com/BerriAI/litellm/issues/6012
* fix: fix linting errors
* fix: fix linting errors
* fix: fix linting errors
* fix(proxy_cli.py): fix import route for app + health checks path (#6026)
* (testing): Enable testing us.anthropic.claude-3-haiku-20240307-v1:0. (#6018)
* fix(proxy_cli.py): fix import route for app + health checks gettsburg.wav
Fixes https://github.com/BerriAI/litellm/issues/5999
---------
Co-authored-by: David Manouchehri <david.manouchehri@ai.moda>
---------
Co-authored-by: Ved Patwardhan <54766411+vedpatwardhan@users.noreply.github.com>
Co-authored-by: David Manouchehri <david.manouchehri@ai.moda>
* add max_completion_tokens
* add max_completion_tokens
* add max_completion_tokens support for OpenAI models
* add max_completion_tokens param
* add max_completion_tokens for bedrock converse models
* add test for converse maxTokens
* fix openai o1 param mapping test
* move test optional params
* add max_completion_tokens for anthropic api
* fix conftest
* add max_completion tokens for vertex ai partner models
* add max_completion_tokens for fireworks ai
* add max_completion_tokens for hf rest api
* add test for param mapping
* add param mapping for vertex, gemini + testing
* predibase is the most unstable and unusable llm api in prod, can't handle our ci/cd
* add max_completion_tokens to openai supported params
* fix fireworks ai param mapping
2024-09-14 14:57:01 -07:00
Renamed from litellm/tests/test_optional_params.py (Browse further)