Commit graph

45 commits

Author SHA1 Message Date
Ishaan Jaff
257e78ffb5 test fix vertex_ai/mistral-large@2407 2025-04-16 21:52:52 -07:00
Ishaan Jaff
cf801f9642 test fix vertex_ai/codestral 2025-04-16 20:01:36 -07:00
Krish Dholakia
e1f7bcb47d
Fix VertexAI Credential Caching issue (#9756)
* refactor(vertex_llm_base.py): Prevent credential misrouting for projects

Fixes https://github.com/BerriAI/litellm/issues/7904

* fix: passing unit tests

* fix(vertex_llm_base.py): common auth logic across sync + async vertex ai calls

prevents credential caching issue across both flows

* test: fix test

* fix(vertex_llm_base.py): handle project id in default cause

* fix(factory.py): don't pass cache control if not set

bedrock invoke does not support this

* test: fix test

* fix(vertex_llm_base.py): add .exception message in load_auth

* fix: fix ruff error
2025-04-04 16:38:08 -07:00
Ishaan Jaff
888446256c fix vertex failing test 2025-04-04 15:37:48 -07:00
Krish Dholakia
5ac61a7572
Add bedrock latency optimized inference support (#9623)
* fix(converse_transformation.py): add performanceConfig param support on bedrock

Closes https://github.com/BerriAI/litellm/issues/7606

* fix(converse_transformation.py): refactor to use more flexible single getter for params which are separate config blocks

* test(test_main.py): add e2e mock test for bedrock performance config

* build(model_prices_and_context_window.json): add versioned multimodal embedding

* refactor(multimodal_embeddings/): migrate to config pattern

* feat(vertex_ai/multimodalembeddings): calculate usage for multimodal embedding calls

Enables cost calculation for multimodal embeddings

* feat(vertex_ai/multimodalembeddings): get usage object for embedding calls

ensures accurate cost tracking for vertexai multimodal embedding calls

* fix(embedding_handler.py): remove unused imports

* fix: fix linting errors

* fix: handle response api usage calculation

* test(test_vertex_ai_multimodal_embedding_transformation.py): update tests

* test: mark flaky test

* feat(vertex_ai/multimodal_embeddings/transformation.py): support text+image+video input

* docs(vertex.md): document sending text + image to vertex multimodal embeddings

* test: remove incorrect file

* fix(multimodal_embeddings/transformation.py): fix linting error

* style: remove unused import
2025-03-29 00:23:09 -07:00
Ishaan Jaff
8eaf4c55c0 test_gemini_fine_tuned_model_request_consistency 2025-03-26 14:18:11 -07:00
Ishaan Jaff
da9d849348 test_gemini_fine_tuned_model_request_consistency 2025-03-26 14:10:32 -07:00
Ishaan Jaff
baa9b34950 Merge branch 'main' into litellm_fix_vertex_ai_ft_models 2025-03-26 11:11:54 -07:00
Ishaan Jaff
bbe69a47a9 _is_model_gemini_gemini_spec_model 2025-03-26 10:53:23 -07:00
Ishaan Jaff
efce84815a test_gemini_fine_tuned_model_request_consistency 2025-03-25 23:54:06 -07:00
Krish Dholakia
6fd18651d1
Support litellm.api_base for vertex_ai + gemini/ across completion, embedding, image_generation (#9516)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 19s
Helm unit test / unit-test (push) Successful in 20s
* test(tests): add unit testing for litellm_proxy integration

* fix(cost_calculator.py): fix tracking cost in sdk when calling proxy

* fix(main.py): respect litellm.api_base on `vertex_ai/` and `gemini/` routes

* fix(main.py): consistently support custom api base across gemini + vertexai on embedding + completion

* feat(vertex_ai/): test

* fix: fix linting error

* test: set api base as None before starting loadtest
2025-03-25 23:46:20 -07:00
James Guthrie
437dbe7246 fix: VertexAI outputDimensionality configuration
VertexAI's API documentation [1] is an absolute mess. In it, they
describe the parameter to configure output dimensionality as
`output_dimensionality`. In the API example, they switch to using snake
case `outputDimensionality`, which is the correct variant.

[1]: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#generative-ai-get-text-embedding-drest
2025-03-19 11:07:36 +01:00
Krish Dholakia
f6535ae6ad
Support format param for specifying image type (#9019)
* fix(transformation.py): support a 'format' parameter for image's

allow user to specify mime type

* fix: pass mimetype via 'format' param

* feat(gemini/chat/transformation.py): support 'format' param for gemini

* fix(factory.py): support 'format' param on sync bedrock converse calls

* feat(bedrock/converse_transformation.py): support 'format' param for bedrock async calls

* refactor(factory.py): move to supporting 'format' param in base helper

ensures consistency in param support

* feat(gpt_transformation.py): filter out 'format' param

don't send invalid param to openai

* fix(gpt_transformation.py): fix translation

* fix: fix translation error
2025-03-05 19:52:53 -08:00
Krish Dholakia
88eedb22b9
vertex ai anthropic thinking param support (#8853)
* fix(vertex_llm_base.py): handle credentials passed in as dictionary

* fix(router.py): support vertex credentials as json dict

* test(test_vertex.py): allows easier testing

mock anthropic thinking response for vertex ai

* test(vertex_ai_partner_models/): don't remove "@" from model

breaks anthropic cost calculation

* test: move testing

* fix: fix linting error

* fix: fix linting error

* fix(vertex_ai_partner_models/main.py): split @ for codestral model

* test: fix test

* fix: fix stripping "@" on mistral models

* fix: fix test

* test: fix test
2025-02-26 21:37:18 -08:00
Krish Dholakia
de261e2120
Doc updates + management endpoint fixes (#8138)
* Litellm dev 01 29 2025 p4 (#8107)

* fix(key_management_endpoints.py): always get db team

Fixes https://github.com/BerriAI/litellm/issues/7983

* test(test_key_management.py): add unit test enforcing check_db_only is always true on key generate checks

* test: fix test

* test: skip gemini thinking

* Litellm dev 01 29 2025 p3 (#8106)

* fix(__init__.py): reduces size of __init__.py and reduces scope for errors by using correct param

* refactor(__init__.py): refactor init by cleaning up redundant params

* refactor(__init__.py): move more constants into constants.py

cleanup root

* refactor(__init__.py): more cleanup

* feat(__init__.py): expose new 'disable_hf_tokenizer_download' param

enables hf model usage in offline env

* docs(config_settings.md): document new disable_hf_tokenizer_download param

* fix: fix linting error

* fix: fix unsafe comparison

* test: fix test

* docs(public_teams.md): add doc showing how to expose public teams for users to join

* docs: add beta disclaimer on public teams

* test: update tests
2025-01-30 22:56:41 -08:00
Ishaan Jaff
89d0d893fd fix test gemini-2.0-flash-thinking-exp-01-21 2025-01-30 14:05:59 -08:00
Ishaan Jaff
bf46ae7346
(Testing) e2e testing for team budget enforcement checks (#7988)
* test_team_and_key_budget_enforcement

* test_team_budget_update

* test_gemini_pro_json_schema_httpx_content_policy_error
2025-01-24 18:18:12 -08:00
Ishaan Jaff
117256d264 test_async_vertexai_streaming_response 2025-01-16 21:45:12 -08:00
Krish Dholakia
843cd3b7c6
test: initial test to enforce all functions in user_api_key_auth.py h… (#7797)
* test: initial test to enforce all functions in user_api_key_auth.py have direct testing

* test(test_user_api_key_auth.py): add is_allowed_route unit test

* test(test_user_api_key_auth.py): add more tests

* test(test_user_api_key_auth.py): add complete testing coverage for all functions in `user_api_key_auth.py`

* test(test_db_schema_changes.py): add a unit test to ensure all db schema changes are backwards compatible

gives user an easy rollback path

* test: fix schema compatibility test filepath

* test: fix test
2025-01-15 21:52:45 -08:00
Krish Dholakia
80d6bbec29
Litellm dev 01 14 2025 p2 (#7772)
* feat(pass_through_endpoints.py): fix anthropic end user cost tracking

* fix(anthropic/chat/transformation.py): use returned provider model for anthropic

handles anthropic `-latest` tag in request body throwing cost calculation errors

ensures we can be accurate in our model cost tracking

* feat(model_prices_and_context_window.json): add gemini-2.0-flash-thinking-exp pricing

* test: update test to use assumption that user_api_key_dict can get anthropic user id

* test: fix test

* fix: fix test

* fix(anthropic_pass_through.py): uncomment previous anthropic end-user cost tracking code block

can't guarantee user api key dict always has end user id - too many code paths

* fix(user_api_key_auth.py): this allows end user id from request body to always be read and set in auth object

* fix(auth_check.py): fix linting error

* test: fix auth check

* fix(auth_utils.py): fix get end user id to handle metadata = None
2025-01-15 21:34:50 -08:00
Krish Dholakia
0c3fef24cd
Litellm dev 01 06 2025 p2 (#7597)
* test(test_amazing_vertex_completion.py): fix test

* test: initial working code gecko test

* fix(vertex_ai_non_gemini.py): support vertex ai code gecko fake streaming

Fixes https://github.com/BerriAI/litellm/issues/7360

* test(test_get_model_info.py): add test for getting custom provider model info

Covers https://github.com/BerriAI/litellm/issues/7575

* fix(utils.py): fix get_provider_model_info check

Handle custom llm provider scenario

Fixes https://github.com/
BerriAI/litellm/issues/7575
2025-01-06 21:04:49 -08:00
Krrish Dholakia
23685e93f3 test: skip tests pending vertex credentials
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 13s
2025-01-05 15:29:51 -08:00
Krrish Dholakia
c0e4485fe0 test: update test amazing vertex
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 12s
2025-01-05 13:56:31 -08:00
Krish Dholakia
78fe124c14
Add 'end_user', 'user' and 'requested_model' on more prometheus metrics (#7399)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 11s
* fix(prometheus.py): support streaming end user litellm_proxy_total_requests_metric tracking

* fix(prometheus.py): add 'requested_model' and 'end_user_id' to 'litellm_request_total_latency_metric_bucket'

enables latency tracking by end user + requested model

* fix(prometheus.py): add end user, user and requested model metrics to 'litellm_llm_api_latency_metric'

* test: update prometheus unit tests

* test(test_prometheus.py): update tests

* test(test_prometheus.py): fix test

* test: reorder test
2024-12-24 14:08:30 -08:00
Krish Dholakia
3671829e39
Complete 'requests' library removal (#7350)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 12s
* refactor: initial commit moving watsonx_text to base_llm_http_handler + clarifying new provider directory structure

* refactor(watsonx/completion/handler.py): move to using base llm http handler

removes 'requests' library usage

* fix(watsonx_text/transformation.py): fix result transformation

migrates to transformation.py, for usage with base llm http handler

* fix(streaming_handler.py): migrate watsonx streaming to transformation.py

ensures streaming works with base llm http handler

* fix(streaming_handler.py): fix streaming linting errors and remove watsonx conditional logic

* fix(watsonx/): fix chat route post completion route refactor

* refactor(watsonx/embed): refactor watsonx to use base llm http handler for embedding calls as well

* refactor(base.py): remove requests library usage from litellm

* build(pyproject.toml): remove requests library usage

* fix: fix linting errors

* fix: fix linting errors

* fix(types/utils.py): fix validation errors for modelresponsestream

* fix(replicate/handler.py): fix linting errors

* fix(litellm_logging.py): handle modelresponsestream object

* fix(streaming_handler.py): fix modelresponsestream args

* fix: remove unused imports

* test: fix test

* fix: fix test

* test: fix test

* test: fix tests

* test: fix test

* test: fix patch target

* test: fix test
2024-12-22 07:21:25 -08:00
Ishaan Jaff
49b6e539b7 test fix 2024-12-21 18:48:16 -08:00
Krish Dholakia
404bf2974b
Litellm dev 2024 12 20 p1 (#7335)
* fix(utils.py): e2e azure tts cost tracking working

moves tts response obj to include hidden params (allows for litellm call id, etc. to be sent in response headers) ; fixes spend_Tracking_utils logging payload to account for non-base model use-case

Fixes https://github.com/BerriAI/litellm/issues/7223

* fix: fix linting errors

* build(model_prices_and_context_window.json): add bedrock llama 3.3

Closes https://github.com/BerriAI/litellm/issues/7329

* fix(openai.py): fix return type for sync openai httpx response

* test: update test

* fix(spend_tracking_utils.py): fix if check

* fix(spend_tracking_utils.py): fix if check

* test: improve debugging for test

* fix: fix import
2024-12-20 21:22:31 -08:00
Krish Dholakia
27a4d08604
Litellm dev 2024 12 19 p3 (#7322)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 13s
* fix(utils.py): remove unsupported optional params (if drop_params=True) before passing into map openai params

Fixes https://github.com/BerriAI/litellm/issues/7242

* test: new test for langfuse prompt management hook

Addresses https://github.com/BerriAI/litellm/issues/3893#issuecomment-2549080296

* feat(main.py): add 'get_chat_completion_prompt' customlogger hook

allows for langfuse prompt management

Addresses https://github.com/BerriAI/litellm/issues/3893#issuecomment-2549080296

* feat(langfuse_prompt_management.py): working e2e langfuse prompt management

works with `langfuse/` route

* feat(main.py): initial tracing for dynamic langfuse params

allows admin to specify langfuse keys by model in model_list

* feat(main.py): support passing langfuse credentials dynamically

* fix(langfuse_prompt_management.py): create langfuse client based on dynamic callback params

allows dynamic langfuse params to work

* fix: fix linting errors

* docs(prompt_management.md): refactor docs for sdk + proxy prompt management tutorial

* docs(prompt_management.md): cleanup doc

* docs: cleanup topnav

* docs(prompt_management.md): update docs to be easier to use

* fix: remove unused imports

* docs(prompt_management.md): add architectural overview doc

* fix(litellm_logging.py): fix dynamic param passing

* fix(langfuse_prompt_management.py): fix linting errors

* fix: fix linting errors

* fix: use typing_extensions for typealias to ensure python3.8 compatibility

* test: use stream_options in test to account for tiktoken diff

* fix: improve import error message, and check run test earlier
2024-12-20 13:30:16 -08:00
Krish Dholakia
179d2f56b7
LiteLLM Minor Fixes & Improvements (12/16/2024) - p1 (#7263)
* fix(factory.py): skip empty text blocks for bedrock user messages

Fixes https://github.com/BerriAI/litellm/issues/7169

* Add support for Gemini 2.0 GoogleSearch tool (#7257)

* Add support for google_search tool in gemini 2.0

* Add/modify tests

* Fix grounding check

* Remove 2.0 grounding test; exclude experimental model in VERTEX_MODELS_TO_NOT_TEST

* Swap order of tools

* DFix formatting

* fix(get_api_base.py): return api base in streaming response

Fixes https://github.com/BerriAI/litellm/issues/7249

Closes https://github.com/BerriAI/litellm/pull/7250

* fix(cost_calculator.py): only set base model to model if not none

Fixes https://github.com/BerriAI/litellm/issues/7223

* fix(cost_calculator.py): enforce stricter order when picking model for cost calculation

* fix(cost_calculator.py): fix '_select_model_name_for_cost_calc' to return model name with region name prefix if provided

* fix(utils.py): fix 'get_model_info()' to handle edge case where model name starts with custom llm provider AND custom llm provider is given

* fix(cost_calculator.py): handle `custom_llm_provider-` scenario

* fix(cost_calculator.py): e2e working tts cost tracking

ensures initial message is passed in, to cost calculator

* fix(factory.py): suppress linting errors

* fix(cost_calculator.py): strip llm provider from model name after selecting cost calc model

* fix(litellm_logging.py): store initial request in 'input' field + accept base_model to be passed in litellm_params directly

* test: handle none env var value in flaky test

* fix(litellm_logging.py): fix linting errors

---------

Co-authored-by: Sam B <samlingx@gmail.com>
2024-12-17 15:33:36 -08:00
Ishaan Jaff
21003c4337
Code Quality Improvement - use vertex_ai/ as folder name for vertexAI (#7166)
* fix rename vertex ai

* run ci/cd again
2024-12-11 00:32:41 -08:00
Krish Dholakia
5bbf906c83
Litellm code qa common config (#7113)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 44s
* feat(base_llm): initial commit for common base config class

Addresses code qa critique https://github.com/andrewyng/aisuite/issues/113#issuecomment-2512369132

* feat(base_llm/): add transform request/response abstract methods to base config class

* feat(cohere-+-clarifai): refactor integrations to use common base config class

* fix: fix linting errors

* refactor(anthropic/): move anthropic + vertex anthropic to use base config

* test: fix xai test

* test: fix tests

* fix: fix linting errors

* test: comment out WIP test

* fix(transformation.py): fix is pdf used check

* fix: fix linting error
2024-12-09 15:58:25 -08:00
Ishaan Jaff
139dbe4a96 fix test_completion_fine_tuned_model 2024-12-03 08:18:54 -08:00
Krish Dholakia
7e5085dc7b
Litellm dev 11 21 2024 (#6837)
* Fix Vertex AI function calling invoke: use JSON format instead of protobuf text format. (#6702)

* test: test tool_call conversion when arguments is empty dict

Fixes https://github.com/BerriAI/litellm/issues/6833

* fix(openai_like/handler.py): return more descriptive error message

Fixes https://github.com/BerriAI/litellm/issues/6812

* test: skip overloaded model

* docs(anthropic.md): update anthropic docs to show how to route to any new model

* feat(groq/): fake stream when 'response_format' param is passed

Groq doesn't support streaming when response_format is set

* feat(groq/): add response_format support for groq

Closes https://github.com/BerriAI/litellm/issues/6845

* fix(o1_handler.py): remove fake streaming for o1

Closes https://github.com/BerriAI/litellm/issues/6801

* build(model_prices_and_context_window.json): add groq llama3.2b model pricing

Closes https://github.com/BerriAI/litellm/issues/6807

* fix(utils.py): fix handling ollama response format param

Fixes https://github.com/BerriAI/litellm/issues/6848#issuecomment-2491215485

* docs(sidebars.js): refactor chat endpoint placement

* fix: fix linting errors

* test: fix test

* test: fix test

* fix(openai_like/handler): handle max retries

* fix(streaming_handler.py): fix streaming check for openai-compatible providers

* test: update test

* test: correctly handle model is overloaded error

* test: update test

* test: fix test

* test: mark flaky test

---------

Co-authored-by: Guowang Li <Guowang@users.noreply.github.com>
2024-11-22 01:53:52 +05:30
Krish Dholakia
b0be5bf3a1
LiteLLM Minor Fixes & Improvements (11/19/2024) (#6820)
* fix(anthropic/chat/transformation.py): add json schema as values: json_schema

fixes passing pydantic obj to anthropic

Fixes https://github.com/BerriAI/litellm/issues/6766

* (feat): Add timestamp_granularities parameter to transcription API (#6457)

* Add timestamp_granularities parameter to transcription API

* add param to the local test

* fix(databricks/chat.py): handle max_retries optional param handling for openai-like calls

Fixes issue with calling finetuned vertex ai models via databricks route

* build(ui/): add team admins via proxy ui

* fix: fix linting error

* test: fix test

* docs(vertex.md): refactor docs

* test: handle overloaded anthropic model error

* test: remove duplicate test

* test: fix test

* test: update test to handle model overloaded error

---------

Co-authored-by: Show <35062952+BrunooShow@users.noreply.github.com>
2024-11-21 00:57:58 +05:30
Ishaan Jaff
e1ca95672a vertex_ai/codestral@2405 is very unstable - handle their instability in our tests 2024-11-17 18:17:14 -08:00
Ishaan Jaff
585b54e70c handle codestral@2405 instability 2024-11-17 17:55:19 -08:00
Ishaan Jaff
9ba8f40bd1
(Feat) Add Vertex Model Garden llama 3.1 models (#6763)
* add VertexAIModelGardenModels

* VertexAIModelGardenModels

* test_vertexai_model_garden_model_completion

* docs model garden
2024-11-15 16:14:06 -08:00
Ishaan Jaff
c119bad5f9
(feat) Vertex AI - add support for fine tuned embedding models (#6749)
* fix use fine tuned vertex embedding models

* test_vertex_embedding_url

* add _transform_openai_request_to_fine_tuned_embedding_request

* add _transform_openai_request_to_fine_tuned_embedding_request

* add transform_openai_request_to_vertex_embedding_request

* add _transform_vertex_response_to_openai_for_fine_tuned_models

* test_vertexai_embedding for ft models

* fix test_vertexai_embedding_finetuned

* doc fine tuned / custom embedding models

* fix test test_partner_models_httpx
2024-11-14 20:37:55 -08:00
Krish Dholakia
f79365df6e
LiteLLM Minor Fixes & Improvements (10/30/2024) (#6519)
* refactor: move gemini translation logic inside the transformation.py file

easier to isolate the gemini translation logic

* fix(gemini-transformation): support multiple tool calls in message body

Merges https://github.com/BerriAI/litellm/pull/6487/files

* test(test_vertex.py): add remaining tests from https://github.com/BerriAI/litellm/pull/6487

* fix(gemini-transformation): return tool calls for multiple tool calls

* fix: support passing logprobs param for vertex + gemini

* feat(vertex_ai): add logprobs support for gemini calls

* fix(anthropic/chat/transformation.py): fix disable parallel tool use flag

* fix: fix linting error

* fix(_logging.py): log stacktrace information in json logs

Closes https://github.com/BerriAI/litellm/issues/6497

* fix(utils.py): fix mem leak for async stream + completion

Uses a global executor pool instead of creating a new thread on each request

Fixes https://github.com/BerriAI/litellm/issues/6404

* fix(factory.py): handle tool call + content in assistant message for bedrock

* fix: fix import

* fix(factory.py): maintain support for content as a str in assistant response

* fix: fix import

* test: cleanup test

* fix(vertex_and_google_ai_studio/): return none for content if no str value

* test: retry flaky tests

* (UI) Fix viewing members, keys in a team + added testing  (#6514)

* fix listing teams on ui

* LiteLLM Minor Fixes & Improvements (10/28/2024)  (#6475)

* fix(anthropic/chat/transformation.py): support anthropic disable_parallel_tool_use param

Fixes https://github.com/BerriAI/litellm/issues/6456

* feat(anthropic/chat/transformation.py): support anthropic computer tool use

Closes https://github.com/BerriAI/litellm/issues/6427

* fix(vertex_ai/common_utils.py): parse out '$schema' when calling vertex ai

Fixes issue when trying to call vertex from vercel sdk

* fix(main.py): add 'extra_headers' support for azure on all translation endpoints

Fixes https://github.com/BerriAI/litellm/issues/6465

* fix: fix linting errors

* fix(transformation.py): handle no beta headers for anthropic

* test: cleanup test

* fix: fix linting error

* fix: fix linting errors

* fix: fix linting errors

* fix(transformation.py): handle dummy tool call

* fix(main.py): fix linting error

* fix(azure.py): pass required param

* LiteLLM Minor Fixes & Improvements (10/24/2024) (#6441)

* fix(azure.py): handle /openai/deployment in azure api base

* fix(factory.py): fix faulty anthropic tool result translation check

Fixes https://github.com/BerriAI/litellm/issues/6422

* fix(gpt_transformation.py): add support for parallel_tool_calls to azure

Fixes https://github.com/BerriAI/litellm/issues/6440

* fix(factory.py): support anthropic prompt caching for tool results

* fix(vertex_ai/common_utils): don't pop non-null required field

Fixes https://github.com/BerriAI/litellm/issues/6426

* feat(vertex_ai.py): support code_execution tool call for vertex ai + gemini

Closes https://github.com/BerriAI/litellm/issues/6434

* build(model_prices_and_context_window.json): Add 'supports_assistant_prefill' for bedrock claude-3-5-sonnet v2 models

Closes https://github.com/BerriAI/litellm/issues/6437

* fix(types/utils.py): fix linting

* test: update test to include required fields

* test: fix test

* test: handle flaky test

* test: remove e2e test - hitting gemini rate limits

* Litellm dev 10 26 2024 (#6472)

* docs(exception_mapping.md): add missing exception types

Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183

* fix(main.py): register custom model pricing with specific key

Ensure custom model pricing is registered to the specific model+provider key combination

* test: make testing more robust for custom pricing

* fix(redis_cache.py): instrument otel logging for sync redis calls

ensures complete coverage for all redis cache calls

* (Testing) Add unit testing for DualCache - ensure in memory cache is used when expected  (#6471)

* test test_dual_cache_get_set

* unit testing for dual cache

* fix async_set_cache_sadd

* test_dual_cache_local_only

* redis otel tracing + async support for latency routing (#6452)

* docs(exception_mapping.md): add missing exception types

Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183

* fix(main.py): register custom model pricing with specific key

Ensure custom model pricing is registered to the specific model+provider key combination

* test: make testing more robust for custom pricing

* fix(redis_cache.py): instrument otel logging for sync redis calls

ensures complete coverage for all redis cache calls

* refactor: pass parent_otel_span for redis caching calls in router

allows for more observability into what calls are causing latency issues

* test: update tests with new params

* refactor: ensure e2e otel tracing for router

* refactor(router.py): add more otel tracing acrosss router

catch all latency issues for router requests

* fix: fix linting error

* fix(router.py): fix linting error

* fix: fix test

* test: fix tests

* fix(dual_cache.py): pass ttl to redis cache

* fix: fix param

* fix(dual_cache.py): set default value for parent_otel_span

* fix(transformation.py): support 'response_format' for anthropic calls

* fix(transformation.py): check for cache_control inside 'function' block

* fix: fix linting error

* fix: fix linting errors

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>

---------

Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>

* ui new build

* Add retry strat (#6520)

Signed-off-by: dbczumar <corey.zumar@databricks.com>

* (fix) slack alerting - don't spam the failed cost tracking alert for the same model  (#6543)

* fix use failing_model as cache key for failed_tracking_alert

* fix use standard logging payload for getting response cost

* fix  kwargs.get("response_cost")

* fix getting response cost

* (feat) add XAI ChatCompletion Support  (#6373)

* init commit for XAI

* add full logic for xai chat completion

* test_completion_xai

* docs xAI

* add xai/grok-beta

* test_xai_chat_config_get_openai_compatible_provider_info

* test_xai_chat_config_map_openai_params

* add xai streaming test

---------

Signed-off-by: dbczumar <corey.zumar@databricks.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Corey Zumar <39497902+dbczumar@users.noreply.github.com>
2024-11-02 00:44:32 +05:30
Krish Dholakia
2b9db05e08
feat(proxy_cli.py): add new 'log_config' cli param (#6352)
* feat(proxy_cli.py): add new 'log_config' cli param

Allows passing logging.conf to uvicorn on startup

* docs(cli.md): add logging conf to uvicorn cli docs

* fix(get_llm_provider_logic.py): fix default api base for litellm_proxy

Fixes https://github.com/BerriAI/litellm/issues/6332

* feat(openai_like/embedding): Add support for jina ai embeddings

Closes https://github.com/BerriAI/litellm/issues/6337

* docs(deploy.md): update entrypoint.sh filepath post-refactor

Fixes outdated docs

* feat(prometheus.py): emit time_to_first_token metric on prometheus

Closes https://github.com/BerriAI/litellm/issues/6334

* fix(prometheus.py): only emit time to first token metric if stream is True

enables more accurate ttft usage

* test: handle vertex api instability

* fix(get_llm_provider_logic.py): fix import

* fix(openai.py): fix deepinfra default api base

* fix(anthropic/transformation.py): remove anthropic beta header (#6361)
2024-10-21 21:25:58 -07:00
Krish Dholakia
11f9df923a
LiteLLM Minor Fixes & Improvements (10/10/2024) (#6158)
* refactor(vertex_ai_partner_models/anthropic): refactor anthropic to use partner model logic

* fix(vertex_ai/): support passing custom api base to partner models

Fixes https://github.com/BerriAI/litellm/issues/4317

* fix(proxy_server.py): Fix prometheus premium user check logic

* docs(prometheus.md): update quick start docs

* fix(custom_llm.py): support passing dynamic api key + api base

* fix(realtime_api/main.py): Add request/response logging for realtime api endpoints

Closes https://github.com/BerriAI/litellm/issues/6081

* feat(openai/realtime): add openai realtime api logging

Closes https://github.com/BerriAI/litellm/issues/6081

* fix(realtime_streaming.py): fix linting errors

* fix(realtime_streaming.py): fix linting errors

* fix: fix linting errors

* fix pattern match router

* Add literalai in the sidebar observability category (#6163)

* fix: add literalai in the sidebar

* fix: typo

* update (#6160)

* Feat: Add Langtrace integration (#5341)

* Feat: Add Langtrace integration

* add langtrace service name

* fix timestamps for traces

* add tests

* Discard Callback + use existing otel logger

* cleanup

* remove print statments

* remove callback

* add docs

* docs

* add logging docs

* format logging

* remove emoji and add litellm proxy example

* format logging

* format `logging.md`

* add langtrace docs to logging.md

* sync conflict

* docs fix

* (perf) move s3 logging to Batch logging + async [94% faster perf under 100 RPS on 1 litellm instance] (#6165)

* fix move s3 to use customLogger

* add basic s3 logging test

* add s3 to custom logger compatible

* use batch logger for s3

* s3 set flush interval and batch size

* fix s3 logging

* add notes on s3 logging

* fix s3 logging

* add basic s3 logging test

* fix s3 type errors

* add test for sync logging on s3

* fix: fix to debug log

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Willy Douhard <willy.douhard@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>
Co-authored-by: Ali Waleed <ali@scale3labs.com>
2024-10-11 23:04:36 -07:00
Ishaan Jaff
eef9bad9a6
(performance improvement - vertex embeddings) ~111.11% faster (#6000)
* use vertex llm as base class for embeddings

* use correct vertex class in main.py

* set_headers in vertex llm base

* add types for vertex embedding requests

* add embedding handler for vertex

* use async mode for vertex embedding tests

* use vertexAI textEmbeddingConfig

* fix linting

* add sync and async mode testing for vertex ai embeddings
2024-10-01 14:16:21 -07:00
Ishaan Jaff
045ecf3ffb
(feat proxy slack alerting) - allow opting in to getting key / internal user alerts (#5990)
* define all slack alert types

* use correct type hints for alert type

* use correct defaults on slack alerting

* add readme for slack alerting

* fix linting error

* update readme

* docs all alert types

* update slack alerting docs

* fix slack alerting docs

* handle new testing dir structure

* fix config for testing

* fix testing folder related imports

* fix /tests import errors

* fix import stream_chunk_testdata

* docs alert types

* fix test test_langfuse_trace_id

* fix type checks for slack alerting

* fix outage alerting test slack
2024-10-01 10:49:22 -07:00
Krrish Dholakia
5ad01e59f6 refactor: fix imports 2024-09-28 21:08:14 -07:00
Krrish Dholakia
3560f0ef2c refactor: move all testing to top-level of repo
Closes https://github.com/BerriAI/litellm/issues/486
2024-09-28 21:08:14 -07:00
Renamed from litellm/tests/test_amazing_vertex_completion.py (Browse further)