* fix(model_checks.py): update returning known model from wildcard to filter based on given model prefix
ensures wildcard route - `vertex_ai/gemini-*` just returns known vertex_ai/gemini- models
* test(test_proxy_utils.py): add unit testing for new 'get_known_models_from_wildcard' helper
* test(test_models.py): add e2e testing for `/model_group/info` endpoint
* feat(prometheus.py): support tracking total requests by user_email on prometheus
adds initial support for tracking total requests by user_email
* test(test_prometheus.py): add testing to ensure user email is always tracked
* test: update testing for new prometheus metric
* test(test_prometheus_unit_tests.py): add user email to total proxy metric
* test: update tests
* test: fix spend tests
* test: fix test
* fix(pagerduty.py): fix linting error
* fix(prometheus.py): fix setting key budget metrics
ensures custom metadata works with key budget metric
this is a patch. root cause pr is written in a separate branch
* test: fix test
* refactor(prometheus.py): refactor to remove `_tag` metrics and incorporate in regular metrics
* fix(prometheus.py): handle label values not set in enum values
* feat(prometheus.py): working e2e custom metadata labels
* docs(prometheus.md): update docs to clarify how custom metrics would work
* test(test_prometheus_unit_tests.py): fix test
* test: add unit testing
* fix(prometheus.py): refactor litellm_input_tokens_metric to use label factory
makes adding new metrics easier
* feat(prometheus.py): add 'request_model' to 'litellm_input_tokens_metric'
* refactor(prometheus.py): refactor 'litellm_output_tokens_metric' to use label factory
makes adding new metrics easier
* feat(prometheus.py): emit requested model in 'litellm_output_tokens_metric'
* feat(prometheus.py): support tracking success events with custom metrics
* refactor(prometheus.py): refactor '_set_latency_metrics' to just use the initially created enum values dictionary
reduces scope for missing values
* feat(prometheus.py): refactor all tags to support custom metadata tags
enables metadata tags to be used across for e2e tracking
* fix(prometheus.py): fix requested model on success event enum_values
* test: fix test
* test: fix test
* test: handle filenotfound error
* docs(prometheus.md): add new values to prometheus
* docs(prometheus.md): document adding custom metrics on prometheus
* bump: version 1.56.5 → 1.56.6
* build(model_prices_and_context_window.json): update groq models to specify 'supports_vision' parameter
Closes https://github.com/BerriAI/litellm/issues/7433
* docs(groq.md): add groq vision example to docs
Closes https://github.com/BerriAI/litellm/issues/7433
* fix(prometheus.py): refactor self.litellm_proxy_failed_requests_metric to use label factory
* feat(prometheus.py): new 'litellm_proxy_failed_requests_by_tag_metric'
allows tracking failed requests by tag on proxy
* fix(prometheus.py): fix exception logging
* feat(prometheus.py): add new 'litellm_request_total_latency_by_tag_metric'
enables tracking latency by use-case
* feat(prometheus.py): add new llm api latency by tag metric
* feat(prometheus.py): new litellm_deployment_latency_per_output_token_by_tag metric
allows tracking deployment latency by tag
* fix(prometheus.py): refactor 'litellm_requests_metric' to use enum values + label factory
* feat(prometheus.py): new litellm_proxy_total_requests_by_tag metric
allows tracking total requests by tag
* feat(prometheus.py): new metric litellm_deployment_successful_fallbacks_by_tag
allows tracking deployment fallbacks by tag
* fix(prometheus.py): new 'litellm_deployment_failed_fallbacks_by_tag' metric
allows tracking failed fallbacks on deployment by custom tag
* test: fix test
* test: rename test to run earlier
* test: skip flaky test
* refactor(prometheus.py): refactor to use a factory method for setting label values
allows for enforcing end user id disabling on prometheus e2e
* fix: fix linting error
* fix(prometheus.py): ensure label factory drops end-user value if disabled by user
* fix(prometheus.py): specify service_type in end user tracking get
* test: fix test
* test: add unit test for prometheus factory
* test: improve test (cover flag not set scenario)
* test(test_prometheus.py): e2e test covering if 'end_user_id' shows up in testing if disabled
scrapes the `/metrics` endpoint and scans text to check if id appears in emitted metrics
* fix(prometheus.py): stringify status code before logging it
* fix(prometheus.py): support streaming end user litellm_proxy_total_requests_metric tracking
* fix(prometheus.py): add 'requested_model' and 'end_user_id' to 'litellm_request_total_latency_metric_bucket'
enables latency tracking by end user + requested model
* fix(prometheus.py): add end user, user and requested model metrics to 'litellm_llm_api_latency_metric'
* test: update prometheus unit tests
* test(test_prometheus.py): update tests
* test(test_prometheus.py): fix test
* test: reorder test
* fix(core_helpers.py): return None, instead of raising kwargs is None error
Closes https://github.com/BerriAI/litellm/issues/6500
* docs(cost_tracking.md): cleanup doc
* fix(vertex_and_google_ai_studio.py): handle function call with no params passed in
Closes https://github.com/BerriAI/litellm/issues/6495
* test(test_router_timeout.py): add test for router timeout + retry logic
* test: update test to use module level values
* (fix) Prometheus - Log Postgres DB latency, status on prometheus (#6484)
* fix logging DB fails on prometheus
* unit testing log to otel wrapper
* unit testing for service logger + prometheus
* use LATENCY buckets for service logging
* fix service logging
* docs clarify vertex vs gemini
* (router_strategy/) ensure all async functions use async cache methods (#6489)
* fix router strat
* use async set / get cache in router_strategy
* add coverage for router strategy
* fix imports
* fix batch_get_cache
* use async methods for least busy
* fix least busy use async methods
* fix test_dual_cache_increment
* test async_get_available_deployment when routing_strategy="least-busy"
* (fix) proxy - fix when `STORE_MODEL_IN_DB` should be set (#6492)
* set store_model_in_db at the top
* correctly use store_model_in_db global
* (fix) `PrometheusServicesLogger` `_get_metric` should return metric in Registry (#6486)
* fix logging DB fails on prometheus
* unit testing log to otel wrapper
* unit testing for service logger + prometheus
* use LATENCY buckets for service logging
* fix service logging
* fix _get_metric in prom services logger
* add clear doc string
* unit testing for prom service logger
* bump: version 1.51.0 → 1.51.1
* Add `azure/gpt-4o-mini-2024-07-18` to model_prices_and_context_window.json (#6477)
* Update utils.py (#6468)
Fixed missing keys
* (perf) Litellm redis router fix - ~100ms improvement (#6483)
* docs(exception_mapping.md): add missing exception types
Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183
* fix(main.py): register custom model pricing with specific key
Ensure custom model pricing is registered to the specific model+provider key combination
* test: make testing more robust for custom pricing
* fix(redis_cache.py): instrument otel logging for sync redis calls
ensures complete coverage for all redis cache calls
* refactor: pass parent_otel_span for redis caching calls in router
allows for more observability into what calls are causing latency issues
* test: update tests with new params
* refactor: ensure e2e otel tracing for router
* refactor(router.py): add more otel tracing acrosss router
catch all latency issues for router requests
* fix: fix linting error
* fix(router.py): fix linting error
* fix: fix test
* test: fix tests
* fix(dual_cache.py): pass ttl to redis cache
* fix: fix param
* perf(cooldown_cache.py): improve cooldown cache, to store cache results in memory for 5s, prevents redis call from being made on each request
reduces 100ms latency per call with caching enabled on router
* fix: fix test
* fix(cooldown_cache.py): handle if a result is None
* fix(cooldown_cache.py): add debug statements
* refactor(dual_cache.py): move to using an in-memory check for batch get cache, to prevent redis from being hit for every call
* fix(cooldown_cache.py): fix linting erropr
* refactor(prometheus.py): move to using standard logging payload for reading the remaining request / tokens
Ensures prometheus token tracking works for anthropic as well
* fix: fix linting error
* fix(redis_cache.py): make sure ttl is always int (handle float values)
Fixes issue where redis_client.ex was not working correctly due to float ttl
* fix: fix linting error
* test: update test
* fix: fix linting error
---------
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Xingyao Wang <xingyao@all-hands.dev>
Co-authored-by: vibhanshu-ob <115142120+vibhanshu-ob@users.noreply.github.com>
* testing for failure events prometheus
* set set_llm_deployment_failure_metrics
* test_async_post_call_failure_hook
* unit testing for all prometheus functions
* fix linting
* unit testig for prometheus
* unit testing for success metrics
* use 1 helper for _increment_token_metrics
* use helper for _increment_remaining_budget_metrics
* use _increment_remaining_budget_metrics
* use _increment_top_level_request_and_spend_metrics
* use helper for _set_latency_metrics
* remove noqa violation
* fix test prometheus
* test prometheus
* unit testing for all prometheus helper functions
* fix prom unit tests
* fix unit tests prometheus
* fix unit test prom