Commit graph

6 commits

Author SHA1 Message Date
Ishaan Jaff
c7f14e936a
(code quality) run ruff rule to ban unused imports (#7313)
* remove unused imports

* fix AmazonConverseConfig

* fix test

* fix import

* ruff check fixes

* test fixes

* fix testing

* fix imports
2024-12-19 12:33:42 -08:00
Krish Dholakia
516c2a6a70
Litellm remove circular imports (#7232)
* fix(utils.py): initial commit to remove circular imports - moves llmproviders to utils.py

* fix(router.py): fix 'litellm.EmbeddingResponse' import from router.py

'

* refactor: fix litellm.ModelResponse import on pass through endpoints

* refactor(litellm_logging.py): fix circular import for custom callbacks literal

* fix(factory.py): fix circular imports inside prompt factory

* fix(cost_calculator.py): fix circular import for 'litellm.Usage'

* fix(proxy_server.py): fix potential circular import with `litellm.Router'

* fix(proxy/utils.py): fix potential circular import in `litellm.Router`

* fix: remove circular imports in 'auth_checks' and 'guardrails/'

* fix(prompt_injection_detection.py): fix router impor t

* fix(vertex_passthrough_logging_handler.py): fix potential circular imports in vertex pass through

* fix(anthropic_pass_through_logging_handler.py): fix potential circular imports

* fix(slack_alerting.py-+-ollama_chat.py): fix modelresponse import

* fix(base.py): fix potential circular import

* fix(handler.py): fix potential circular ref in codestral + cohere handler's

* fix(azure.py): fix potential circular imports

* fix(gpt_transformation.py): fix modelresponse import

* fix(litellm_logging.py): add logging base class - simplify typing

makes it easy for other files to type check the logging obj without introducing circular imports

* fix(azure_ai/embed): fix potential circular import on handler.py

* fix(databricks/): fix potential circular imports in databricks/

* fix(vertex_ai/): fix potential circular imports on vertex ai embeddings

* fix(vertex_ai/image_gen): fix import

* fix(watsonx-+-bedrock): cleanup imports

* refactor(anthropic-pass-through-+-petals): cleanup imports

* refactor(huggingface/): cleanup imports

* fix(ollama-+-clarifai): cleanup circular imports

* fix(openai_like/): fix impor t

* fix(openai_like/): fix embedding handler

cleanup imports

* refactor(openai.py): cleanup imports

* fix(sagemaker/transformation.py): fix import

* ci(config.yml): add circular import test to ci/cd
2024-12-14 16:28:34 -08:00
Krish Dholakia
e68bb4e051
Litellm dev 12 12 2024 (#7203)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 47s
* fix(azure/): support passing headers to azure openai endpoints

Fixes https://github.com/BerriAI/litellm/issues/6217

* fix(utils.py): move default tokenizer to just openai

hf tokenizer makes network calls when trying to get the tokenizer - this slows down execution time calls

* fix(router.py): fix pattern matching router - add generic "*" to it as well

Fixes issue where generic "*" model access group wouldn't show up

* fix(pattern_match_deployments.py): match to more specific pattern

match to more specific pattern

allows setting generic wildcard model access group and excluding specific models more easily

* fix(proxy_server.py): fix _delete_deployment to handle base case where db_model list is empty

don't delete all router models  b/c of empty list

Fixes https://github.com/BerriAI/litellm/issues/7196

* fix(anthropic/): fix handling response_format for anthropic messages with anthropic api

* fix(fireworks_ai/): support passing response_format + tool call in same message

Addresses https://github.com/BerriAI/litellm/issues/7135

* Revert "fix(fireworks_ai/): support passing response_format + tool call in same message"

This reverts commit 6a30dc6929.

* test: fix test

* fix(replicate/): fix replicate default retry/polling logic

* test: add unit testing for router pattern matching

* test: update test to use default oai tokenizer

* test: mark flaky test

* test: skip flaky test
2024-12-13 08:54:03 -08:00
Krish Dholakia
350cfc36f7
Litellm merge pr (#7161)
* build: merge branch

* test: fix openai naming

* fix(main.py): fix openai renaming

* style: ignore function length for config factory

* fix(sagemaker/): fix routing logic

* fix: fix imports

* fix: fix override
2024-12-10 22:49:26 -08:00
Krish Dholakia
0c0498dd60
Litellm dev 12 07 2024 (#7086)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 11s
* fix(main.py): support passing max retries to azure/openai embedding integrations

Fixes https://github.com/BerriAI/litellm/issues/7003

* feat(team_endpoints.py): allow updating team model aliases

Closes https://github.com/BerriAI/litellm/issues/6956

* feat(router.py): allow specifying model id as fallback - skips any cooldown check

Allows a default model to be checked if all models in cooldown

s/o @micahjsmith

* docs(reliability.md): add fallback to specific model to docs

* fix(utils.py): new 'is_prompt_caching_valid_prompt' helper util

Allows user to identify if messages/tools have prompt caching

Related issue: https://github.com/BerriAI/litellm/issues/6784

* feat(router.py): store model id for prompt caching valid prompt

Allows routing to that model id on subsequent requests

* fix(router.py): only cache if prompt is valid prompt caching prompt

prevents storing unnecessary items in cache

* feat(router.py): support routing prompt caching enabled models to previous deployments

Closes https://github.com/BerriAI/litellm/issues/6784

* test: fix linting errors

* feat(databricks/): convert basemodel to dict and exclude none values

allow passing pydantic message to databricks

* fix(utils.py): ensure all chat completion messages are dict

* (feat) Track `custom_llm_provider` in LiteLLMSpendLogs (#7081)

* add custom_llm_provider to SpendLogsPayload

* add custom_llm_provider to SpendLogs

* add custom llm provider to SpendLogs payload

* test_spend_logs_payload

* Add MLflow to the side bar (#7031)

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* (bug fix) SpendLogs update DB catch all possible DB errors for retrying  (#7082)

* catch DB_CONNECTION_ERROR_TYPES

* fix DB retry mechanism for SpendLog updates

* use DB_CONNECTION_ERROR_TYPES in auth checks

* fix exp back off for writing SpendLogs

* use _raise_failed_update_spend_exception to ensure errors print as NON blocking

* test_update_spend_logs_multiple_batches_with_failure

* (Feat) Add StructuredOutputs support for Fireworks.AI (#7085)

* fix model cost map fireworks ai "supports_response_schema": true,

* fix supports_response_schema

* fix map openai params fireworks ai

* test_map_response_format

* test_map_response_format

* added deepinfra/Meta-Llama-3.1-405B-Instruct (#7084)

* bump: version 1.53.9 → 1.54.0

* fix deepinfra

* litellm db fixes LiteLLM_UserTable (#7089)

* ci/cd queue new release

* fix llama-3.3-70b-versatile

* refactor - use consistent file naming convention `AI21/` -> `ai21`  (#7090)

* fix refactor - use consistent file naming convention

* ci/cd run again

* fix naming structure

* fix use consistent naming (#7092)

---------

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Yuki Watanabe <31463517+B-Step62@users.noreply.github.com>
Co-authored-by: ali sayyah <ali.sayyah2@gmail.com>
2024-12-08 00:30:33 -08:00
Ishaan Jaff
36e99ebce7
fix use consistent naming (#7092)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 11s
2024-12-07 22:01:00 -08:00
Renamed from litellm/llms/AzureOpenAI/azure.py (Browse further)