* fix(litellm_proxy/chat/transformation.py): support 'thinking' param
Fixes https://github.com/BerriAI/litellm/issues/9380
* feat(azure/gpt_transformation.py): add azure audio model support
Closes https://github.com/BerriAI/litellm/issues/6305
* fix(utils.py): use provider_config in common functions
* fix(utils.py): add missing provider configs to get_chat_provider_config
* test: fix test
* fix: fix path
* feat(utils.py): make bedrock invoke nova config baseconfig compatible
* fix: fix linting errors
* fix(azure_ai/transformation.py): remove buggy optional param filtering for azure ai
Removes incorrect check for support tool choice when calling azure ai - prevented calling models with response_format unless on litell model cost map
* fix(amazon_cohere_transformation.py): fix bedrock invoke cohere transformation to inherit from coherechatconfig
* test: fix azure ai tool choice mapping
* fix: fix model cost map to add 'supports_tool_choice' to cohere models
* fix(get_supported_openai_params.py): check if custom llm provider in llm providers
* fix(get_supported_openai_params.py): fix llm provider in list check
* fix: fix ruff check errors
* fix: support defs when calling bedrock nova
* fix(factory.py): fix test
* test: move test to just checking async
* fix(transformation.py): handle function call with no schema
* fix(utils.py): handle pydantic base model in message tool calls
Fix https://github.com/BerriAI/litellm/issues/9321
* fix(vertex_and_google_ai_studio.py): handle tools=[]
Fixes https://github.com/BerriAI/litellm/issues/9080
* test: remove max token restriction
* test: fix basic test
* fix(get_supported_openai_params.py): fix check
* fix(converse_transformation.py): support fake streaming for meta.llama3-3-70b-instruct-v1:0
* fix: fix test
* fix: parse out empty dictionary on dbrx streaming + tool calls
* fix(handle-'strict'-param-when-calling-fireworks-ai): fireworks ai does not support 'strict' param
* fix: fix ruff check
'
* fix: handle no strict in function
* fix: revert bedrock change - handle in separate PR
* test: fix import for test
* fix: fix bad error string
* docs: cleanup files docs
* fix(files/main.py): cleanup error string
* style: initial commit with a provider/config pattern for files api
google ai studio files api onboarding
* fix: test
* feat(gemini/files/transformation.py): support gemini files api response transformation
* fix(gemini/files/transformation.py): return file id as gemini uri
allows id to be passed in to chat completion request, just like openai
* feat(llm_http_handler.py): support async route for files api on llm_http_handler
* fix: fix linting errors
* fix: fix model info check
* fix: fix ruff errors
* fix: fix linting errors
* Revert "fix: fix linting errors"
This reverts commit 926a5a527f.
* fix: fix linting errors
* test: fix test
* test: fix tests
* build(pyproject.toml): add new dev dependencies - for type checking
* build: reformat files to fit black
* ci: reformat to fit black
* ci(test-litellm.yml): make tests run clear
* build(pyproject.toml): add ruff
* fix: fix ruff checks
* build(mypy/): fix mypy linting errors
* fix(hashicorp_secret_manager.py): fix passing cert for tls auth
* build(mypy/): resolve all mypy errors
* test: update test
* fix: fix black formatting
* build(pre-commit-config.yaml): use poetry run black
* fix(proxy_server.py): fix linting error
* fix: fix ruff safe representation error
* fix: initial commit for adding provider model discovery to gemini
* feat(gemini/): add model discovery for gemini/ route
* docs(set_keys.md): update docs to show you can check available gemini models as well
* feat(anthropic/): add model discovery for anthropic api key
* feat(xai/): add model discovery for XAI
enables checking what models an xai key can call
* ci: bump ci config yml
* fix(topaz/common_utils.py): fix linting error
* fix: fix linting error for python38
* refactor: introduce new transformation config for gpt-4o-transcribe models
* refactor: expose new transformation configs for audio transcription
* ci: fix config yml
* feat(openai/transcriptions): support provider config transformation on openai audio transcriptions
allows gpt-4o and whisper audio transformation to work as expected
* refactor: migrate fireworks ai + deepgram to new transform request pattern
* feat(openai/): working support for gpt-4o-audio-transcribe
* build(model_prices_and_context_window.json): add gpt-4o-transcribe to model cost map
* build(model_prices_and_context_window.json): specify what endpoints are supported for `/audio/transcriptions`
* fix(get_supported_openai_params.py): fix return
* refactor(deepgram/): migrate unit test to deepgram handler
* refactor: cleanup unused imports
* fix(get_supported_openai_params.py): fix linting error
* test: update test
* feat(batches/): fix batch cost calculation - ensure it's accurate
use the correct cost value - prev. defaulting to non-batch cost
* feat(batch_utils.py): log batch models to spend logs + standard logging payload
makes it easy to understand how cost was calculated
* fix: fix stored payload for test
* test: fix test
* feat: initial commit - enable dev to see translated request
* feat(utils.py): expose new endpoint - `/utils/transform_request` to see the raw request sent by litellm
* feat(transform_request.tsx): allow user to see their transformed request
* refactor(litellm_logging.py): return raw request in 3 parts - api_base, headers, request body
easier to render each individually on UI vs. extracting from combined string
* feat: transform_request.tsx
working e2e raw request viewing
* fix(litellm_logging.py): fix transform viewing for bedrock models
* fix(litellm_logging.py): don't return sensitive headers in raw request headers
prevent accidental leak
* feat(transform_request.tsx): style improvements
* fix(anthropic_claude3_transformation.py): fix amazon anthropic claude 3 tool calling transformation on invoke route
move to using anthropic config as base
* fix(utils.py): expose anthropic config via providerconfigmanager
* fix(llm_http_handler.py): support json mode on async completion calls
* fix(invoke_handler/make_call): support json mode for anthropic called via bedrock invoke
* fix(anthropic/): handle 'response_format: {"type": "text"}` + migrate amazon claude 3 invoke config to inherit from anthropic config
Prevents error when passing in 'response_format: {"type": "text"}
* test: fix test
* fix(utils.py): fix base invoke provider check
* fix(anthropic_claude3_transformation.py): don't pass 'stream' param
* fix: fix linting errors
* fix(converse_transformation.py): handle response_format type=text for converse
* fix(o_series_transformation.py): fix optional param check for o-series models
o3-mini and o-1 do not support parallel tool calling
* fix(utils.py): support 'drop_params' for 'thinking' param across models
allows switching to older claude versions (or non-anthropic models) and param to be safely dropped
* fix: fix passing thinking param in optional params
allows dropping thinking_param where not applicable
* test: update old model
* fix(utils.py): fix linting errors
* fix(main.py): add param to acompletion
* feat(bedrock/rerank): infer model region if model given as arn
* test: add unit testing to ensure bedrock region name inferred from arn on rerank
* feat(bedrock/rerank/transformation.py): include search units for bedrock rerank result
Resolves https://github.com/BerriAI/litellm/issues/7258#issuecomment-2671557137
* test(test_bedrock_completion.py): add testing for bedrock cohere rerank
* feat(cost_calculator.py): refactor rerank cost tracking to support bedrock cost tracking
* build(model_prices_and_context_window.json): add amazon.rerank model to model cost map
* fix(cost_calculator.py): bedrock/common_utils.py
get base model from model w/ arn -> handles rerank model
* build(model_prices_and_context_window.json): add bedrock cohere rerank pricing
* feat(bedrock/rerank): migrate bedrock config to basererank config
* Revert "feat(bedrock/rerank): migrate bedrock config to basererank config"
This reverts commit 84fae1f167.
* test: add testing to ensure large doc / queries are correctly counted
* Revert "test: add testing to ensure large doc / queries are correctly counted"
This reverts commit 4337f1657e.
* fix(migrate-jina-ai-to-rerank-config): enables cost tracking
* refactor(jina_ai/): finish migrating jina ai to base rerank config
enables cost tracking
* fix(jina_ai/rerank): e2e jina ai rerank cost tracking
* fix: cleanup dead code
* fix: fix python3.8 compatibility error
* test: fix test
* test: add e2e testing for azure ai rerank
* fix: fix linting error
* test: mark cohere as flaky
* feat(litellm_pre_call_utils.py): support `x-litellm-tags` request header
allow tag based routing + spend tracking via request headers
* docs(request_headers.md): document new `x-litellm-tags` for tag based routing and spend tracking
* docs(tag_routing.md): add to docs
* fix(utils.py): only pass str values for openai metadata param
* fix(utils.py): drop non-str values for metadata param to openai
preview-feature, otel span was being sent in
* fix(main.py): fix key leak error when unknown provider given
don't return passed in args if unknown route on embedding
* fix(main.py): remove instances of {args} being passed in exception
prevent potential key leaks
* test(code_coverage/prevent_key_leaks_in_codebase.py): ban usage of {args} in codebase
* fix: fix linting errors
* fix: remove unused variable
* fix(azure/chat/gpt_transformation.py): add 'prediction' as a support azure param
Closes https://github.com/BerriAI/litellm/issues/8500
* build(model_prices_and_context_window.json): add new 'gemini-2.0-pro-exp-02-05' model
* style: cleanup invalid json trailing commma
* feat(utils.py): support passing 'tokenizer_config' to register_prompt_template
enables passing complete tokenizer config of model to litellm
Allows calling deepseek on bedrock with the correct prompt template
* fix(utils.py): fix register_prompt_template for custom model names
* test(test_prompt_factory.py): fix test
* test(test_completion.py): add e2e test for bedrock invoke deepseek ft model
* feat(base_invoke_transformation.py): support hf_model_name param for bedrock invoke calls
enables proxy admin to set base model for ft bedrock deepseek model
* feat(bedrock/invoke): support deepseek_r1 route for bedrock
makes it easy to apply the right chat template to that call
* feat(constants.py): store deepseek r1 chat template - allow user to get correct response from deepseek r1 without extra work
* test(test_completion.py): add e2e mock test for bedrock deepseek
* docs(bedrock.md): document new deepseek_r1 route for bedrock
allows us to use the right config
* fix(exception_mapping_utils.py): catch read operation timeout
* fix(utils.py): fix vertex ai optional param handling
don't pass max retries to unsupported route
Fixes https://github.com/BerriAI/litellm/issues/8254
* fix(get_supported_openai_params.py): fix linting error
* fix(get_supported_openai_params.py): default to openai-like spec
* test: fix test
* fix: fix linting error
* Improved wildcard route handling on `/models` and `/model_group/info` (#8473)
* fix(model_checks.py): update returning known model from wildcard to filter based on given model prefix
ensures wildcard route - `vertex_ai/gemini-*` just returns known vertex_ai/gemini- models
* test(test_proxy_utils.py): add unit testing for new 'get_known_models_from_wildcard' helper
* test(test_models.py): add e2e testing for `/model_group/info` endpoint
* feat(prometheus.py): support tracking total requests by user_email on prometheus
adds initial support for tracking total requests by user_email
* test(test_prometheus.py): add testing to ensure user email is always tracked
* test: update testing for new prometheus metric
* test(test_prometheus_unit_tests.py): add user email to total proxy metric
* test: update tests
* test: fix spend tests
* test: fix test
* fix(pagerduty.py): fix linting error
* (Bug fix) - Using `include_usage` for /completions requests + unit testing (#8484)
* pass stream options (#8419)
* test_completion_streaming_usage_metrics
* test_text_completion_include_usage
---------
Co-authored-by: Kaushik Deka <55996465+Kaushikdkrikhanu@users.noreply.github.com>
* fix naming docker stable release
* build(model_prices_and_context_window.json): handle azure model update
* docs(token_auth.md): clarify scopes can be a list or comma separated string
* docs: fix docs
* add sonar pricings (#8476)
* add sonar pricings
* Update model_prices_and_context_window.json
* Update model_prices_and_context_window.json
* Update model_prices_and_context_window_backup.json
* update load testing script
* fix test_async_router_context_window_fallback
* pplx - fix supports tool choice openai param (#8496)
* fix prom check startup (#8492)
* test_async_router_context_window_fallback
* ci(config.yml): mark daily docker builds with `-nightly` (#8499)
Resolves https://github.com/BerriAI/litellm/discussions/8495
* (Redis Cluster) - Fixes for using redis cluster + pipeline (#8442)
* update RedisCluster creation
* update RedisClusterCache
* add redis ClusterCache
* update async_set_cache_pipeline
* cleanup redis cluster usage
* fix redis pipeline
* test_init_async_client_returns_same_instance
* fix redis cluster
* update mypy_path
* fix init_redis_cluster
* remove stub
* test redis commit
* ClusterPipeline
* fix import
* RedisCluster import
* fix redis cluster
* Potential fix for code scanning alert no. 2129: Clear-text logging of sensitive information
Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>
* fix naming of redis cluster integration
* test_redis_caching_ttl_pipeline
* fix async_set_cache_pipeline
---------
Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>
* Litellm UI stable version 02 12 2025 (#8497)
* fix(key_management_endpoints.py): fix `/key/list` to include `return_full_object` as a top-level query param
Allows user to specify they want the keys as a list of objects
* refactor(key_list.tsx): initial refactor of key table in user dashboard
offloads key filtering logic to backend api
prevents common error of user not being able to see their keys
* fix(key_management_endpoints.py): allow internal user to query `/key/list` to see their keys
* fix(key_management_endpoints.py): add validation checks and filtering to `/key/list` endpoint
allow internal user to see their keys. not anybody else's
* fix(view_key_table.tsx): fix issue where internal user could not see default team keys
* fix: fix linting error
* fix: fix linting error
* fix: fix linting error
* fix: fix linting error
* fix: fix linting error
* fix: fix linting error
* fix: fix linting error
* test_supports_tool_choice
* test_async_router_context_window_fallback
* fix: fix test (#8501)
* Litellm dev 02 12 2025 p1 (#8494)
* Resolves https://github.com/BerriAI/litellm/issues/6625 (#8459)
- enables no auth for SMTP
Signed-off-by: Regli Daniel <daniel.regli1@sanitas.com>
* add sonar pricings (#8476)
* add sonar pricings
* Update model_prices_and_context_window.json
* Update model_prices_and_context_window.json
* Update model_prices_and_context_window_backup.json
* test: fix test
---------
Signed-off-by: Regli Daniel <daniel.regli1@sanitas.com>
Co-authored-by: Dani Regli <1daniregli@gmail.com>
Co-authored-by: Lucca Zenóbio <luccazen@gmail.com>
* test: fix test
* UI Fixes p2 (#8502)
* refactor(admin.tsx): cleanup add new admin flow
removes buggy flow. Ensures just 1 simple way to add users / update roles.
* fix(user_search_modal.tsx): ensure 'add member' button is always visible
* fix(edit_membership.tsx): ensure 'save changes' button always visible
* fix(internal_user_endpoints.py): ensure user in org can be deleted
Fixes issue where user couldn't be deleted if they were a member of an org
* fix: fix linting error
* add phoenix docs for observability integration (#8522)
* Add files via upload
* Update arize_integration.md
* Update arize_integration.md
* add Phoenix docs
* Added custom_attributes to additional_keys which can be sent to athina (#8518)
* (UI) fix log details page (#8524)
* rollback changes to view logs page
* ui new build
* add interface for prefetch
* fix spread operation
* fix max size for request view page
* clean up table
* ui fix column on request logs page
* ui new build
* Add UI Support for Admins to Call /cache/ping and View Cache Analytics (#8475) (#8519)
* [Bug] UI: Newly created key does not display on the View Key Page (#8039)
- Fixed issue where all keys appeared blank for admin users.
- Implemented filtering of data via team settings to ensure all keys are displayed correctly.
* Fix:
- Updated the validator to allow model editing when `keyTeam.team_alias === "Default Team"`.
- Ensured other teams still follow the original validation rules.
* - added some classes in global.css
- added text wrap in output of request,response and metadata in index.tsx
- fixed styles of table in table.tsx
* - added full payload when we open single log entry
- added Combined Info Card in index.tsx
* fix: keys not showing on refresh for internal user
* merge
* main merge
* cache page
* ca remove
* terms change
* fix:places caching inside exp
---------
Signed-off-by: Regli Daniel <daniel.regli1@sanitas.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Kaushik Deka <55996465+Kaushikdkrikhanu@users.noreply.github.com>
Co-authored-by: Lucca Zenóbio <luccazen@gmail.com>
Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>
Co-authored-by: Dani Regli <1daniregli@gmail.com>
Co-authored-by: exiao <exiao@users.noreply.github.com>
Co-authored-by: vivek-athina <153479827+vivek-athina@users.noreply.github.com>
Co-authored-by: Taha Ali <123803932+tahaali-dev@users.noreply.github.com>