""" Unit tests for prometheus metrics """ import pytest import aiohttp import asyncio import uuid import os import sys from openai import AsyncOpenAI import time from typing import Dict, Any sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path END_USER_ID = "my-test-user-34" async def make_bad_chat_completion_request(session, key): url = "http://0.0.0.0:4000/chat/completions" headers = { "Authorization": f"Bearer {key}", "Content-Type": "application/json", } data = { "model": "fake-azure-endpoint", "messages": [{"role": "user", "content": "Hello"}], } async with session.post(url, headers=headers, json=data) as response: status = response.status response_text = await response.text() return status, response_text async def make_good_chat_completion_request(session, key): url = "http://0.0.0.0:4000/chat/completions" headers = { "Authorization": f"Bearer {key}", "Content-Type": "application/json", } data = { "model": "fake-openai-endpoint", "messages": [{"role": "user", "content": f"Hello {uuid.uuid4()}"}], "tags": ["teamB"], "user": END_USER_ID, # test if disable end user tracking for prometheus works } async with session.post(url, headers=headers, json=data) as response: status = response.status response_text = await response.text() return status, response_text async def make_chat_completion_request_with_fallback(session, key): url = "http://0.0.0.0:4000/chat/completions" headers = { "Authorization": f"Bearer {key}", "Content-Type": "application/json", } data = { "model": "fake-azure-endpoint", "messages": [{"role": "user", "content": "Hello"}], "fallbacks": ["fake-openai-endpoint"], } async with session.post(url, headers=headers, json=data) as response: status = response.status response_text = await response.text() # make a request with a failed fallback data = { "model": "fake-azure-endpoint", "messages": [{"role": "user", "content": "Hello"}], "fallbacks": ["unknown-model"], } async with session.post(url, headers=headers, json=data) as response: status = response.status response_text = await response.text() return @pytest.mark.asyncio async def test_proxy_failure_metrics(): """ - Make 1 bad chat completion call to "fake-azure-endpoint" - GET /metrics - assert the failure metric for the requested model is incremented by 1 - Assert the Exception class and status code are correct """ async with aiohttp.ClientSession() as session: # Make a bad chat completion call status, response_text = await make_bad_chat_completion_request( session, "sk-1234" ) # Check if the request failed as expected assert status == 429, f"Expected status 429, but got {status}" # Get metrics async with session.get("http://0.0.0.0:4000/metrics") as response: metrics = await response.text() print("/metrics", metrics) # Check if the failure metric is present and correct expected_metric = 'litellm_proxy_failed_requests_metric_total{api_key_alias="None",end_user="None",exception_class="Openai.RateLimitError",exception_status="429",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None",user="default_user_id"} 1.0' assert ( expected_metric in metrics ), "Expected failure metric not found in /metrics." expected_llm_deployment_failure = 'litellm_deployment_failure_responses_total{api_key_alias="None",end_user="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",status_code="429",team="None",team_alias="None",user="default_user_id",user_email="None"} 1.0' assert expected_llm_deployment_failure assert ( 'litellm_proxy_total_requests_metric_total{api_key_alias="None",end_user="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",status_code="429",team="None",team_alias="None",user="default_user_id",user_email="None"} 1.0' in metrics ) assert ( 'litellm_deployment_failure_responses_total{api_base="https://exampleopenaiendpoint-production.up.railway.app",api_key_alias="None",api_provider="openai",exception_class="Openai.RateLimitError",exception_status="429",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",litellm_model_name="429",model_id="7499d31f98cd518cf54486d5a00deda6894239ce16d13543398dc8abf870b15f",requested_model="fake-azure-endpoint",team="None",team_alias="None"}' in metrics ) @pytest.mark.asyncio async def test_proxy_success_metrics(): """ Make 1 good /chat/completions call to "openai/gpt-3.5-turbo" GET /metrics Assert the success metric is incremented by 1 """ async with aiohttp.ClientSession() as session: # Make a good chat completion call status, response_text = await make_good_chat_completion_request( session, "sk-1234" ) # Check if the request succeeded as expected assert status == 200, f"Expected status 200, but got {status}" # Get metrics async with session.get("http://0.0.0.0:4000/metrics") as response: metrics = await response.text() print("/metrics", metrics) assert END_USER_ID not in metrics # Check if the success metric is present and correct assert ( 'litellm_request_total_latency_metric_bucket{api_key_alias="None",end_user="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",le="0.005",model="fake",requested_model="fake-openai-endpoint",team="None",team_alias="None",user="default_user_id"}' in metrics ) assert ( 'litellm_llm_api_latency_metric_bucket{api_key_alias="None",end_user="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",le="0.005",model="fake",requested_model="fake-openai-endpoint",team="None",team_alias="None",user="default_user_id"}' in metrics ) verify_latency_metrics(metrics) def verify_latency_metrics(metrics: str): """ Assert that LATENCY_BUCKETS distribution is used for - litellm_request_total_latency_metric_bucket - litellm_llm_api_latency_metric_bucket Very important to verify that the overhead latency metric is present """ from litellm.types.integrations.prometheus import LATENCY_BUCKETS import re import time time.sleep(2) metric_names = [ "litellm_request_total_latency_metric_bucket", "litellm_llm_api_latency_metric_bucket", "litellm_overhead_latency_metric_bucket", ] for metric_name in metric_names: # Extract all 'le' values for the current metric pattern = rf'{metric_name}{{.*?le="(.*?)".*?}}' le_values = re.findall(pattern, metrics) # Convert to set for easier comparison actual_buckets = set(le_values) print("actual_buckets", actual_buckets) expected_buckets = [] for bucket in LATENCY_BUCKETS: expected_buckets.append(str(bucket)) # replace inf with +Inf expected_buckets = [ bucket.replace("inf", "+Inf") for bucket in expected_buckets ] print("expected_buckets", expected_buckets) expected_buckets = set(expected_buckets) # Verify all expected buckets are present assert ( actual_buckets == expected_buckets ), f"Mismatch in {metric_name} buckets. Expected: {expected_buckets}, Got: {actual_buckets}" @pytest.mark.asyncio async def test_proxy_fallback_metrics(): """ Make 1 request with a client side fallback - check metrics """ async with aiohttp.ClientSession() as session: # Make a good chat completion call await make_chat_completion_request_with_fallback(session, "sk-1234") # Get metrics async with session.get("http://0.0.0.0:4000/metrics") as response: metrics = await response.text() print("/metrics", metrics) # Check if successful fallback metric is incremented assert ( 'litellm_deployment_successful_fallbacks_total{api_key_alias="None",exception_class="Openai.RateLimitError",exception_status="429",fallback_model="fake-openai-endpoint",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None"} 1.0' in metrics ) # Check if failed fallback metric is incremented assert ( 'litellm_deployment_failed_fallbacks_total{api_key_alias="None",exception_class="Openai.RateLimitError",exception_status="429",fallback_model="unknown-model",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None"} 1.0' in metrics ) async def create_test_team( session: aiohttp.ClientSession, team_data: Dict[str, Any] ) -> str: """Create a new team and return the team_id""" url = "http://0.0.0.0:4000/team/new" headers = { "Authorization": "Bearer sk-1234", "Content-Type": "application/json", } async with session.post(url, headers=headers, json=team_data) as response: assert ( response.status == 200 ), f"Failed to create team. Status: {response.status}" team_info = await response.json() return team_info["team_id"] async def create_test_user( session: aiohttp.ClientSession, user_data: Dict[str, Any] ) -> str: """Create a new user and return the user_id""" url = "http://0.0.0.0:4000/user/new" headers = { "Authorization": "Bearer sk-1234", "Content-Type": "application/json", } async with session.post(url, headers=headers, json=user_data) as response: assert ( response.status == 200 ), f"Failed to create user. Status: {response.status}" user_info = await response.json() return user_info async def get_prometheus_metrics(session: aiohttp.ClientSession) -> str: """Fetch current prometheus metrics""" async with session.get("http://0.0.0.0:4000/metrics") as response: assert response.status == 200 return await response.text() def extract_budget_metrics(metrics_text: str, team_id: str) -> Dict[str, float]: """Extract budget-related metrics for a specific team""" import re metrics = {} # Get remaining budget remaining_pattern = f'litellm_remaining_team_budget_metric{{team="{team_id}",team_alias="[^"]*"}} ([0-9.]+)' remaining_match = re.search(remaining_pattern, metrics_text) metrics["remaining"] = float(remaining_match.group(1)) if remaining_match else None # Get total budget total_pattern = f'litellm_team_max_budget_metric{{team="{team_id}",team_alias="[^"]*"}} ([0-9.]+)' total_match = re.search(total_pattern, metrics_text) metrics["total"] = float(total_match.group(1)) if total_match else None # Get remaining hours hours_pattern = f'litellm_team_budget_remaining_hours_metric{{team="{team_id}",team_alias="[^"]*"}} ([0-9.]+)' hours_match = re.search(hours_pattern, metrics_text) metrics["remaining_hours"] = float(hours_match.group(1)) if hours_match else None return metrics async def create_test_key(session: aiohttp.ClientSession, team_id: str) -> str: """Generate a new key for the team and return it""" url = "http://0.0.0.0:4000/key/generate" headers = { "Authorization": "Bearer sk-1234", "Content-Type": "application/json", } data = { "team_id": team_id, } async with session.post(url, headers=headers, json=data) as response: assert ( response.status == 200 ), f"Failed to generate key. Status: {response.status}" key_info = await response.json() return key_info["key"] async def get_team_info(session: aiohttp.ClientSession, team_id: str) -> Dict[str, Any]: """Fetch team info and return the response""" url = f"http://0.0.0.0:4000/team/info?team_id={team_id}" headers = { "Authorization": "Bearer sk-1234", } async with session.get(url, headers=headers) as response: assert ( response.status == 200 ), f"Failed to get team info. Status: {response.status}" return await response.json() @pytest.mark.asyncio async def test_team_budget_metrics(): """ Test team budget tracking metrics: 1. Create a team with max_budget 2. Generate a key for the team 3. Make chat completion requests using OpenAI SDK with team's key 4. Verify budget decreases over time 5. Verify request costs are being tracked correctly 6. Verify prometheus metrics match /team/info spend data """ async with aiohttp.ClientSession() as session: # Setup test team team_data = { "team_alias": "budget_test_team", "max_budget": 10, "budget_duration": "7d", } team_id = await create_test_team(session, team_data) print("team_id", team_id) # Generate key for the team team_key = await create_test_key(session, team_id) # Initialize OpenAI client with team's key client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key=team_key) # Make initial request and check budget await client.chat.completions.create( model="fake-openai-endpoint", messages=[{"role": "user", "content": f"Hello {uuid.uuid4()}"}], ) await asyncio.sleep(11) # Wait for metrics to update # Get metrics after request metrics_after_first = await get_prometheus_metrics(session) print("metrics_after_first", metrics_after_first) first_budget = extract_budget_metrics(metrics_after_first, team_id) print(f"Budget after 1 request: {first_budget}") assert ( first_budget["remaining"] < 10.0 ), "remaining budget should be less than 10.0 after first request" assert first_budget["total"] == 10.0, "Total budget metric is incorrect" print("first_budget['remaining_hours']", first_budget["remaining_hours"]) # Verify remaining hours matches 7 days (with small delta for processing time) assert ( abs(first_budget["remaining_hours"] - (7 * 24)) <= 0.1 ), "Budget remaining hours should be approximately 7 days (168 hours)" # Get team info and verify spend matches prometheus metrics team_info = await get_team_info(session, team_id) print("team_info", team_info) _team_info_data = team_info["team_info"] # Calculate spend from prometheus (total - remaining) team_info_spend = float(_team_info_data["spend"]) team_info_max_budget = float(_team_info_data["max_budget"]) team_info_remaining_budget = team_info_max_budget - team_info_spend print("\n\n\n###### Final budget metrics ######\n\n\n") print("team_info_remaining_budget", team_info_remaining_budget) print("prometheus_remaining_budget", first_budget["remaining"]) print( "diff between team_info_remaining_budget and prometheus_remaining_budget", team_info_remaining_budget - first_budget["remaining"], ) # Verify spends match within a small delta (floating point comparison) assert ( abs(team_info_remaining_budget - first_budget["remaining"]) <= 0.00000 ), f"Spend mismatch: Prometheus={team_info_remaining_budget}, Team Info={first_budget['remaining']}" async def create_test_key_with_budget( session: aiohttp.ClientSession, budget_data: Dict[str, Any] ) -> str: """Generate a new key with budget constraints and return it""" url = "http://0.0.0.0:4000/key/generate" headers = { "Authorization": "Bearer sk-1234", "Content-Type": "application/json", } print("budget_data", budget_data) async with session.post(url, headers=headers, json=budget_data) as response: assert ( response.status == 200 ), f"Failed to generate key. Status: {response.status}" key_info = await response.json() return key_info["key"] async def get_key_info(session: aiohttp.ClientSession, key: str) -> Dict[str, Any]: """Fetch key info and return the response""" url = "http://0.0.0.0:4000/key/info" headers = { "Authorization": f"Bearer {key}", } async with session.get(url, headers=headers) as response: assert ( response.status == 200 ), f"Failed to get key info. Status: {response.status}" return await response.json() def extract_key_budget_metrics(metrics_text: str, key_id: str) -> Dict[str, float]: """Extract budget-related metrics for a specific key""" import re metrics = {} # Get remaining budget remaining_pattern = f'litellm_remaining_api_key_budget_metric{{api_key_alias="[^"]*",hashed_api_key="{key_id}"}} ([0-9.]+)' remaining_match = re.search(remaining_pattern, metrics_text) metrics["remaining"] = float(remaining_match.group(1)) if remaining_match else None # Get total budget total_pattern = f'litellm_api_key_max_budget_metric{{api_key_alias="[^"]*",hashed_api_key="{key_id}"}} ([0-9.]+)' total_match = re.search(total_pattern, metrics_text) metrics["total"] = float(total_match.group(1)) if total_match else None # Get remaining hours hours_pattern = f'litellm_api_key_budget_remaining_hours_metric{{api_key_alias="[^"]*",hashed_api_key="{key_id}"}} ([0-9.]+)' hours_match = re.search(hours_pattern, metrics_text) metrics["remaining_hours"] = float(hours_match.group(1)) if hours_match else None return metrics @pytest.mark.asyncio async def test_key_budget_metrics(): """ Test key budget tracking metrics: 1. Create a key with max_budget 2. Make chat completion requests using OpenAI SDK with the key 3. Verify budget decreases over time 4. Verify request costs are being tracked correctly 5. Verify prometheus metrics match /key/info spend data """ async with aiohttp.ClientSession() as session: # Setup test key with unique alias unique_alias = f"budget_test_key_{uuid.uuid4()}" key_data = { "key_alias": unique_alias, "max_budget": 10, "budget_duration": "7d", } key = await create_test_key_with_budget(session, key_data) # Extract key_id from the key info key_info = await get_key_info(session, key) print("key_info", key_info) key_id = key_info["key"] print("key_id", key_id) # Initialize OpenAI client with the key client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key=key) # Make initial request and check budget await client.chat.completions.create( model="fake-openai-endpoint", messages=[{"role": "user", "content": f"Hello {uuid.uuid4()}"}], ) await asyncio.sleep(11) # Wait for metrics to update # Get metrics after request metrics_after_first = await get_prometheus_metrics(session) print("metrics_after_first request", metrics_after_first) first_budget = extract_key_budget_metrics(metrics_after_first, key_id) print(f"Budget after 1 request: {first_budget}") assert ( first_budget["remaining"] < 10.0 ), "remaining budget should be less than 10.0 after first request" assert first_budget["total"] == 10.0, "Total budget metric is incorrect" print("first_budget['remaining_hours']", first_budget["remaining_hours"]) # Verify remaining hours matches 7 days (with small delta for processing time) assert ( abs(first_budget["remaining_hours"] - (7 * 24)) <= 0.1 ), "Budget remaining hours should be approximately 7 days (168 hours)" # Get key info and verify spend matches prometheus metrics key_info = await get_key_info(session, key) print("key_info", key_info) _key_info_data = key_info["info"] # Calculate spend from prometheus (total - remaining) key_info_spend = float(_key_info_data["spend"]) key_info_max_budget = float(_key_info_data["max_budget"]) key_info_remaining_budget = key_info_max_budget - key_info_spend print("\n\n\n###### Final budget metrics ######\n\n\n") print("key_info_remaining_budget", key_info_remaining_budget) print("prometheus_remaining_budget", first_budget["remaining"]) print( "diff between key_info_remaining_budget and prometheus_remaining_budget", key_info_remaining_budget - first_budget["remaining"], ) # Verify spends match within a small delta (floating point comparison) assert ( abs(key_info_remaining_budget - first_budget["remaining"]) <= 0.00000 ), f"Spend mismatch: Prometheus={key_info_remaining_budget}, Key Info={first_budget['remaining']}" @pytest.mark.asyncio async def test_user_email_metrics(): """ Test user email tracking metrics: 1. Create a user with user_email 2. Make chat completion requests using OpenAI SDK with the user's email 3. Verify user email is being tracked correctly in `litellm_user_email_metric` """ async with aiohttp.ClientSession() as session: # Create a user with user_email user_email = f"test-{uuid.uuid4()}@example.com" user_data = { "user_email": user_email, } user_info = await create_test_user(session, user_data) key = user_info["key"] # Initialize OpenAI client with the user's email client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key=key) # Make initial request and check budget await client.chat.completions.create( model="fake-openai-endpoint", messages=[{"role": "user", "content": f"Hello {uuid.uuid4()}"}], ) await asyncio.sleep(11) # Wait for metrics to update # Get metrics after request metrics_after_first = await get_prometheus_metrics(session) print("metrics_after_first request", metrics_after_first) assert ( user_email in metrics_after_first ), "user_email should be tracked correctly"