import sys, os sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path import litellm print(litellm.__file__) from fastapi import FastAPI, Request from fastapi.responses import StreamingResponse import json app = FastAPI() user_api_base = None user_model = None user_debug = False user_max_tokens = None user_temperature = None def print_verbose(print_statement): global user_debug print(f"user_debug: {user_debug}") if user_debug: print(print_statement) def initialize(model, api_base, debug, temperature, max_tokens): global user_model, user_api_base, user_debug, user_max_tokens, user_temperature user_model = model user_api_base = api_base user_debug = debug user_max_tokens = max_tokens user_temperature = temperature # if debug: # litellm.set_verbose = True # for streaming def data_generator(response): print("inside generator") for chunk in response: print(f"chunk: {chunk}") print_verbose(f"returned chunk: {chunk}") yield f"data: {json.dumps(chunk)}\n\n" @app.get("/models") # if project requires model list def model_list(): return dict( data=[{"id": user_model, "object": "model", "created": 1677610602, "owned_by": "openai"}], object="list", ) @app.post("/completions") async def completion(request: Request): data = await request.json() print_verbose(f"data passed in: {data}") if (user_model is None): raise ValueError("Proxy model needs to be set") data["model"] = user_model if user_api_base: data["api_base"] = user_api_base response = litellm.text_completion(**data) if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses return StreamingResponse(data_generator(response), media_type='text/event-stream') return response @app.post("/chat/completions") async def chat_completion(request: Request): data = await request.json() print_verbose(f"data passed in: {data}") if (user_model is None): raise ValueError("Proxy model needs to be set") data["model"] = user_model # override with user settings if user_temperature: data["temperature"] = user_temperature if user_max_tokens: data["max_tokens"] = user_max_tokens if user_api_base: data["api_base"] = user_api_base response = litellm.completion(**data) if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses print("reaches stream") return StreamingResponse(data_generator(response), media_type='text/event-stream') print_verbose(f"response: {response}") return response