import os, types, traceback import json import requests import time from typing import Callable, Optional from litellm.utils import ModelResponse, Usage, Choices, Message, CustomStreamWrapper import litellm import httpx from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler from .prompt_templates.factory import prompt_factory, custom_prompt class ClarifaiError(Exception): def __init__(self, status_code, message, url): self.status_code = status_code self.message = message self.request = httpx.Request( method="POST", url=url ) self.response = httpx.Response(status_code=status_code, request=self.request) super().__init__( self.message ) class ClarifaiConfig: """ Reference: https://clarifai.com/meta/Llama-2/models/llama2-70b-chat TODO fill in the details """ max_tokens: Optional[int] = None temperature: Optional[int] = None top_k: Optional[int] = None def __init__( self, max_tokens: Optional[int] = None, temperature: Optional[int] = None, top_k: Optional[int] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return { k: v for k, v in cls.__dict__.items() if not k.startswith("__") and not isinstance( v, ( types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod, ), ) and v is not None } def validate_environment(api_key): headers = { "accept": "application/json", "content-type": "application/json", } if api_key: headers["Authorization"] = f"Bearer {api_key}" return headers def completions_to_model(payload): # if payload["n"] != 1: # raise HTTPException( # status_code=422, # detail="Only one generation is supported. Please set candidate_count to 1.", # ) params = {} if temperature := payload.get("temperature"): params["temperature"] = temperature if max_tokens := payload.get("max_tokens"): params["max_tokens"] = max_tokens return { "inputs": [{"data": {"text": {"raw": payload["prompt"]}}}], "model": {"output_info": {"params": params}}, } def process_response( model, prompt, response, model_response, api_key, data, encoding, logging_obj ): logging_obj.post_call( input=prompt, api_key=api_key, original_response=response.text, additional_args={"complete_input_dict": data}, ) ## RESPONSE OBJECT try: completion_response = response.json() except Exception: raise ClarifaiError( message=response.text, status_code=response.status_code, url=model ) # print(completion_response) try: choices_list = [] for idx, item in enumerate(completion_response["outputs"]): if len(item["data"]["text"]["raw"]) > 0: message_obj = Message(content=item["data"]["text"]["raw"]) else: message_obj = Message(content=None) choice_obj = Choices( finish_reason="stop", index=idx + 1, #check message=message_obj, ) choices_list.append(choice_obj) model_response["choices"] = choices_list except Exception as e: raise ClarifaiError( message=traceback.format_exc(), status_code=response.status_code, url=model ) # Calculate Usage prompt_tokens = len(encoding.encode(prompt)) completion_tokens = len( encoding.encode(model_response["choices"][0]["message"].get("content")) ) model_response["model"] = model model_response["usage"] = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, ) return model_response def convert_model_to_url(model: str, api_base: str): user_id, app_id, model_id = model.split(".") return f"{api_base}/users/{user_id}/apps/{app_id}/models/{model_id}/outputs" def get_prompt_model_name(url: str): clarifai_model_name = url.split("/")[-2] if "claude" in clarifai_model_name: return "anthropic", clarifai_model_name.replace("_", ".") if ("llama" in clarifai_model_name)or ("mistral" in clarifai_model_name): return "", "meta-llama/llama-2-chat" else: return "", clarifai_model_name async def async_completion( model: str, prompt: str, api_base: str, custom_prompt_dict: dict, model_response: ModelResponse, print_verbose: Callable, encoding, api_key, logging_obj, data=None, optional_params=None, litellm_params=None, logger_fn=None, headers={}): async_handler = AsyncHTTPHandler( timeout=httpx.Timeout(timeout=600.0, connect=5.0) ) response = await async_handler.post( api_base, headers=headers, data=json.dumps(data) ) return process_response( model=model, prompt=prompt, response=response, model_response=model_response, api_key=api_key, data=data, encoding=encoding, logging_obj=logging_obj, ) def completion( model: str, messages: list, api_base: str, model_response: ModelResponse, print_verbose: Callable, encoding, api_key, logging_obj, custom_prompt_dict={}, acompletion=False, optional_params=None, litellm_params=None, logger_fn=None, ): headers = validate_environment(api_key) model = convert_model_to_url(model, api_base) prompt = " ".join(message["content"] for message in messages) # TODO ## Load Config config = litellm.ClarifaiConfig.get_config() for k, v in config.items(): if ( k not in optional_params ): optional_params[k] = v custom_llm_provider, orig_model_name = get_prompt_model_name(model) if custom_llm_provider == "anthropic": prompt = prompt_factory( model=orig_model_name, messages=messages, api_key=api_key, custom_llm_provider="clarifai" ) else: prompt = prompt_factory( model=orig_model_name, messages=messages, api_key=api_key, custom_llm_provider=custom_llm_provider ) # print(prompt); exit(0) data = { "prompt": prompt, **optional_params, } data = completions_to_model(data) ## LOGGING logging_obj.pre_call( input=prompt, api_key=api_key, additional_args={ "complete_input_dict": data, "headers": headers, "api_base": api_base, }, ) if acompletion==True: return async_completion( model=model, prompt=prompt, api_base=api_base, custom_prompt_dict=custom_prompt_dict, model_response=model_response, print_verbose=print_verbose, encoding=encoding, api_key=api_key, logging_obj=logging_obj, data=data, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn, headers=headers, ) else: ## COMPLETION CALL response = requests.post( model, headers=headers, data=json.dumps(data), ) # print(response.content); exit() if response.status_code != 200: raise ClarifaiError(status_code=response.status_code, message=response.text, url=model) if "stream" in optional_params and optional_params["stream"] == True: completion_stream = response.iter_lines() stream_response = CustomStreamWrapper( completion_stream=completion_stream, model=model, custom_llm_provider="clarifai", logging_obj=logging_obj, ) return stream_response else: return process_response( model=model, prompt=prompt, response=response, model_response=model_response, api_key=api_key, data=data, encoding=encoding, logging_obj=logging_obj) class ModelResponseIterator: def __init__(self, model_response): self.model_response = model_response self.is_done = False # Sync iterator def __iter__(self): return self def __next__(self): if self.is_done: raise StopIteration self.is_done = True return self.model_response # Async iterator def __aiter__(self): return self async def __anext__(self): if self.is_done: raise StopAsyncIteration self.is_done = True return self.model_response