import sys import os sys.path.insert( 0, os.path.abspath("../../") ) # Adds the parent directory to the system path import pytest from litellm.llms.azure.common_utils import process_azure_headers from httpx import Headers from base_embedding_unit_tests import BaseLLMEmbeddingTest def test_process_azure_headers_empty(): result = process_azure_headers({}) assert result == {}, "Expected empty dictionary for no input" def test_process_azure_headers_with_all_headers(): input_headers = Headers( { "x-ratelimit-limit-requests": "100", "x-ratelimit-remaining-requests": "90", "x-ratelimit-limit-tokens": "10000", "x-ratelimit-remaining-tokens": "9000", "other-header": "value", } ) expected_output = { "x-ratelimit-limit-requests": "100", "x-ratelimit-remaining-requests": "90", "x-ratelimit-limit-tokens": "10000", "x-ratelimit-remaining-tokens": "9000", "llm_provider-x-ratelimit-limit-requests": "100", "llm_provider-x-ratelimit-remaining-requests": "90", "llm_provider-x-ratelimit-limit-tokens": "10000", "llm_provider-x-ratelimit-remaining-tokens": "9000", "llm_provider-other-header": "value", } result = process_azure_headers(input_headers) assert result == expected_output, "Unexpected output for all Azure headers" def test_process_azure_headers_with_partial_headers(): input_headers = Headers( { "x-ratelimit-limit-requests": "100", "x-ratelimit-remaining-tokens": "9000", "other-header": "value", } ) expected_output = { "x-ratelimit-limit-requests": "100", "x-ratelimit-remaining-tokens": "9000", "llm_provider-x-ratelimit-limit-requests": "100", "llm_provider-x-ratelimit-remaining-tokens": "9000", "llm_provider-other-header": "value", } result = process_azure_headers(input_headers) assert result == expected_output, "Unexpected output for partial Azure headers" def test_process_azure_headers_with_no_matching_headers(): input_headers = Headers( {"unrelated-header-1": "value1", "unrelated-header-2": "value2"} ) expected_output = { "llm_provider-unrelated-header-1": "value1", "llm_provider-unrelated-header-2": "value2", } result = process_azure_headers(input_headers) assert result == expected_output, "Unexpected output for non-matching headers" def test_process_azure_headers_with_dict_input(): input_headers = { "x-ratelimit-limit-requests": "100", "x-ratelimit-remaining-requests": "90", "other-header": "value", } expected_output = { "x-ratelimit-limit-requests": "100", "x-ratelimit-remaining-requests": "90", "llm_provider-x-ratelimit-limit-requests": "100", "llm_provider-x-ratelimit-remaining-requests": "90", "llm_provider-other-header": "value", } result = process_azure_headers(input_headers) assert result == expected_output, "Unexpected output for dict input" from httpx import Client from unittest.mock import MagicMock, patch from openai import AzureOpenAI import litellm from litellm import completion import os @pytest.mark.parametrize( "input, call_type", [ ({"messages": [{"role": "user", "content": "Hello world"}]}, "completion"), ({"input": "Hello world"}, "embedding"), ({"prompt": "Hello world"}, "image_generation"), ], ) @pytest.mark.parametrize( "header_value", [ "headers", "extra_headers", ], ) def test_azure_extra_headers(input, call_type, header_value): from litellm import embedding, image_generation http_client = Client() messages = [{"role": "user", "content": "Hello world"}] with patch.object(http_client, "send", new=MagicMock()) as mock_client: litellm.client_session = http_client try: if call_type == "completion": func = completion elif call_type == "embedding": func = embedding elif call_type == "image_generation": func = image_generation data = { "model": "azure/chatgpt-v-3", "api_base": "https://openai-gpt-4-test-v-1.openai.azure.com", "api_version": "2023-07-01-preview", "api_key": "my-azure-api-key", header_value: { "Authorization": "my-bad-key", "Ocp-Apim-Subscription-Key": "hello-world-testing", }, **input, } response = func(**data) print(response) except Exception as e: print(e) mock_client.assert_called() print(f"mock_client.call_args: {mock_client.call_args}") request = mock_client.call_args[0][0] print(request.method) # This will print 'POST' print(request.url) # This will print the full URL print(request.headers) # This will print the full URL auth_header = request.headers.get("Authorization") apim_key = request.headers.get("Ocp-Apim-Subscription-Key") print(auth_header) assert auth_header == "my-bad-key" assert apim_key == "hello-world-testing" @pytest.mark.parametrize( "api_base, model, expected_endpoint", [ ( "https://my-endpoint-sweden-berri992.openai.azure.com", "dall-e-3-test", "https://my-endpoint-sweden-berri992.openai.azure.com/openai/deployments/dall-e-3-test/images/generations?api-version=2023-12-01-preview", ), ( "https://my-endpoint-sweden-berri992.openai.azure.com/openai/deployments/my-custom-deployment", "dall-e-3", "https://my-endpoint-sweden-berri992.openai.azure.com/openai/deployments/my-custom-deployment/images/generations?api-version=2023-12-01-preview", ), ], ) def test_process_azure_endpoint_url(api_base, model, expected_endpoint): from litellm.llms.azure.azure import AzureChatCompletion azure_chat_completion = AzureChatCompletion() input_args = { "azure_client_params": { "api_version": "2023-12-01-preview", "azure_endpoint": api_base, "azure_deployment": model, "max_retries": 2, "timeout": 600, "api_key": "f28ab7b695af4154bc53498e5bdccb07", }, "model": model, } result = azure_chat_completion.create_azure_base_url(**input_args) assert result == expected_endpoint, "Unexpected endpoint" class TestAzureEmbedding(BaseLLMEmbeddingTest): def get_base_embedding_call_args(self) -> dict: return { "model": "azure/azure-embedding-model", "api_key": os.getenv("AZURE_API_KEY"), "api_base": os.getenv("AZURE_API_BASE"), } def get_custom_llm_provider(self) -> litellm.LlmProviders: return litellm.LlmProviders.AZURE @patch("azure.identity.UsernamePasswordCredential") @patch("azure.identity.get_bearer_token_provider") def test_get_azure_ad_token_from_username_password( mock_get_bearer_token_provider, mock_credential ): from litellm.llms.azure.common_utils import ( get_azure_ad_token_from_username_password, ) # Test inputs client_id = "test-client-id" username = "test-username" password = "test-password" # Mock the token provider function mock_token_provider = lambda: "mock-token" mock_get_bearer_token_provider.return_value = mock_token_provider # Call the function result = get_azure_ad_token_from_username_password( client_id=client_id, azure_username=username, azure_password=password ) # Verify UsernamePasswordCredential was called with correct arguments mock_credential.assert_called_once_with( client_id=client_id, username=username, password=password ) # Verify get_bearer_token_provider was called mock_get_bearer_token_provider.assert_called_once_with( mock_credential.return_value, "https://cognitiveservices.azure.com/.default" ) # Verify the result is the mock token provider assert result == mock_token_provider def test_azure_openai_gpt_4o_naming(monkeypatch): from openai import AzureOpenAI from pydantic import BaseModel, Field monkeypatch.setenv("AZURE_API_VERSION", "2024-10-21") client = AzureOpenAI( api_key="test-api-key", base_url="https://my-endpoint-sweden-berri992.openai.azure.com", api_version="2023-12-01-preview", ) class ResponseFormat(BaseModel): number: str = Field(description="total number of days in a week") days: list[str] = Field(description="name of days in a week") with patch.object(client.chat.completions.with_raw_response, "create") as mock_post: try: completion( model="azure/gpt4o", messages=[{"role": "user", "content": "Hello world"}], response_format=ResponseFormat, client=client, ) except Exception as e: print(e) mock_post.assert_called_once() print(mock_post.call_args.kwargs) assert "tool_calls" not in mock_post.call_args.kwargs @pytest.mark.parametrize( "api_version", [ "2024-10-21", # "2024-02-15-preview", ], ) def test_azure_gpt_4o_with_tool_call_and_response_format(api_version): from litellm import completion from typing import Optional from pydantic import BaseModel import litellm from openai import AzureOpenAI client = AzureOpenAI( api_key="fake-key", base_url="https://fake-azure.openai.azure.com", api_version=api_version, ) class InvestigationOutput(BaseModel): alert_explanation: Optional[str] = None investigation: Optional[str] = None conclusions_and_possible_root_causes: Optional[str] = None next_steps: Optional[str] = None related_logs: Optional[str] = None app_or_infra: Optional[str] = None external_links: Optional[str] = None tools = [ { "type": "function", "function": { "name": "get_current_time", "description": "Returns the current date and time", "strict": True, "parameters": { "properties": { "timezone": { "type": "string", "description": "The timezone to get the current time for (e.g., 'UTC', 'America/New_York')", } }, "required": ["timezone"], "type": "object", "additionalProperties": False, }, }, } ] with patch.object(client.chat.completions.with_raw_response, "create") as mock_post: response = litellm.completion( model="azure/gpt-4o-new-test", messages=[ { "role": "system", "content": "You are a tool-calling AI assist provided with common devops and IT tools that you can use to troubleshoot problems or answer questions.\nWhenever possible you MUST first use tools to investigate then answer the question.", }, { "role": "user", "content": "What is the current date and time in NYC?", }, ], drop_params=True, temperature=0.00000001, tools=tools, tool_choice="auto", response_format=InvestigationOutput, # commenting this line will cause the output to be correct api_version=api_version, client=client, ) mock_post.assert_called_once() if api_version == "2024-10-21": assert "response_format" in mock_post.call_args.kwargs else: assert "response_format" not in mock_post.call_args.kwargs def test_map_openai_params(): """ Ensure response_format does not override tools """ from litellm.llms.azure.chat.gpt_transformation import AzureOpenAIConfig azure_openai_config = AzureOpenAIConfig() tools = [ { "type": "function", "function": { "name": "get_current_time", "description": "Returns the current date and time", "strict": True, "parameters": { "properties": { "timezone": { "type": "string", "description": "The timezone to get the current time for (e.g., 'UTC', 'America/New_York')", } }, "required": ["timezone"], "type": "object", "additionalProperties": False, }, }, } ] received_args = { "non_default_params": { "temperature": 1e-08, "response_format": { "type": "json_schema", "json_schema": { "schema": { "properties": { "alert_explanation": { "anyOf": [{"type": "string"}, {"type": "null"}], "title": "Alert Explanation", }, "investigation": { "anyOf": [{"type": "string"}, {"type": "null"}], "title": "Investigation", }, "conclusions_and_possible_root_causes": { "anyOf": [{"type": "string"}, {"type": "null"}], "title": "Conclusions And Possible Root Causes", }, "next_steps": { "anyOf": [{"type": "string"}, {"type": "null"}], "title": "Next Steps", }, "related_logs": { "anyOf": [{"type": "string"}, {"type": "null"}], "title": "Related Logs", }, "app_or_infra": { "anyOf": [{"type": "string"}, {"type": "null"}], "title": "App Or Infra", }, "external_links": { "anyOf": [{"type": "string"}, {"type": "null"}], "title": "External Links", }, }, "title": "InvestigationOutput", "type": "object", "additionalProperties": False, "required": [ "alert_explanation", "investigation", "conclusions_and_possible_root_causes", "next_steps", "related_logs", "app_or_infra", "external_links", ], }, "name": "InvestigationOutput", "strict": True, }, }, "tools": tools, "tool_choice": "auto", }, "optional_params": {}, "model": "gpt-4o", "drop_params": True, "api_version": "2024-02-15-preview", } optional_params = azure_openai_config.map_openai_params(**received_args) assert "tools" in optional_params assert len(optional_params["tools"]) > 1 @pytest.mark.parametrize("max_retries", [0, 4]) @pytest.mark.parametrize("stream", [True, False]) @patch( "litellm.main.azure_chat_completions.make_sync_azure_openai_chat_completion_request" ) def test_azure_max_retries_0( mock_make_sync_azure_openai_chat_completion_request, max_retries, stream ): from litellm import completion try: completion( model="azure/gpt-4o-new-test", messages=[{"role": "user", "content": "Hello world"}], max_retries=max_retries, stream=stream, ) except Exception as e: print(e) mock_make_sync_azure_openai_chat_completion_request.assert_called_once() assert ( mock_make_sync_azure_openai_chat_completion_request.call_args.kwargs[ "azure_client" ].max_retries == max_retries ) @pytest.mark.parametrize("max_retries", [0, 4]) @pytest.mark.parametrize("stream", [True, False]) @patch("litellm.main.azure_chat_completions.make_azure_openai_chat_completion_request") @pytest.mark.asyncio async def test_async_azure_max_retries_0( make_azure_openai_chat_completion_request, max_retries, stream ): from litellm import acompletion try: await acompletion( model="azure/gpt-4o-new-test", messages=[{"role": "user", "content": "Hello world"}], max_retries=max_retries, stream=stream, ) except Exception as e: print(e) make_azure_openai_chat_completion_request.assert_called_once() assert ( make_azure_openai_chat_completion_request.call_args.kwargs[ "azure_client" ].max_retries == max_retries ) @pytest.mark.parametrize("max_retries", [0, 4]) @pytest.mark.parametrize("stream", [True, False]) @pytest.mark.parametrize("sync_mode", [True, False]) @patch("litellm.llms.azure.common_utils.select_azure_base_url_or_endpoint") @pytest.mark.asyncio async def test_azure_instruct( mock_select_azure_base_url_or_endpoint, max_retries, stream, sync_mode ): from litellm import completion, acompletion args = { "model": "azure_text/instruct-model", "messages": [ {"role": "user", "content": "What is the weather like in Boston?"} ], "max_tokens": 10, "max_retries": max_retries, } try: if sync_mode: completion(**args) else: await acompletion(**args) except Exception: pass mock_select_azure_base_url_or_endpoint.assert_called_once() assert ( mock_select_azure_base_url_or_endpoint.call_args.kwargs["azure_client_params"][ "max_retries" ] == max_retries ) @pytest.mark.parametrize("max_retries", [0, 4]) @pytest.mark.parametrize("sync_mode", [True, False]) @patch("litellm.llms.azure.common_utils.select_azure_base_url_or_endpoint") @pytest.mark.asyncio async def test_azure_embedding_max_retries_0( mock_select_azure_base_url_or_endpoint, max_retries, sync_mode ): from litellm import aembedding, embedding args = { "model": "azure/azure-embedding-model", "input": "Hello world", "max_retries": max_retries, } try: if sync_mode: embedding(**args) else: await aembedding(**args) except Exception as e: print(e) mock_select_azure_base_url_or_endpoint.assert_called_once() print( "mock_select_azure_base_url_or_endpoint.call_args.kwargs", mock_select_azure_base_url_or_endpoint.call_args.kwargs, ) assert ( mock_select_azure_base_url_or_endpoint.call_args.kwargs["azure_client_params"][ "max_retries" ] == max_retries )