import sys, os import traceback from dotenv import load_dotenv load_dotenv() import os sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path import pytest import litellm from litellm.utils import trim_messages, get_token_count, get_valid_models, check_valid_key, validate_environment, function_to_dict # Assuming your trim_messages, shorten_message_to_fit_limit, and get_token_count functions are all in a module named 'message_utils' # Test 1: Check trimming of normal message def test_basic_trimming(): messages = [{"role": "user", "content": "This is a long message that definitely exceeds the token limit."}] trimmed_messages = trim_messages(messages, model="claude-2", max_tokens=8) print("trimmed messages") print(trimmed_messages) # print(get_token_count(messages=trimmed_messages, model="claude-2")) assert (get_token_count(messages=trimmed_messages, model="claude-2")) <= 8 # test_basic_trimming() def test_basic_trimming_no_max_tokens_specified(): messages = [{"role": "user", "content": "This is a long message that is definitely under the token limit."}] trimmed_messages = trim_messages(messages, model="gpt-4") print("trimmed messages for gpt-4") print(trimmed_messages) # print(get_token_count(messages=trimmed_messages, model="claude-2")) assert (get_token_count(messages=trimmed_messages, model="gpt-4")) <= litellm.model_cost['gpt-4']['max_tokens'] # test_basic_trimming_no_max_tokens_specified() def test_multiple_messages_trimming(): messages = [ {"role": "user", "content": "This is a long message that will exceed the token limit."}, {"role": "user", "content": "This is another long message that will also exceed the limit."} ] trimmed_messages = trim_messages(messages=messages, model="gpt-3.5-turbo", max_tokens=20) print("Trimmed messages") print(trimmed_messages) # print(get_token_count(messages=trimmed_messages, model="gpt-3.5-turbo")) assert(get_token_count(messages=trimmed_messages, model="gpt-3.5-turbo")) <= 20 # test_multiple_messages_trimming() def test_multiple_messages_no_trimming(): messages = [ {"role": "user", "content": "This is a long message that will exceed the token limit."}, {"role": "user", "content": "This is another long message that will also exceed the limit."} ] trimmed_messages = trim_messages(messages=messages, model="gpt-3.5-turbo", max_tokens=100) print("Trimmed messages") print(trimmed_messages) assert(messages==trimmed_messages) # test_multiple_messages_no_trimming() def test_large_trimming(): messages = [{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."}, {"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."}] trimmed_messages = trim_messages(messages, max_tokens=20, model="random") print("trimmed messages") print(trimmed_messages) assert(get_token_count(messages=trimmed_messages, model="random")) <= 20 # test_large_trimming() def test_get_valid_models(): old_environ = os.environ os.environ = {'OPENAI_API_KEY': 'temp'} # mock set only openai key in environ valid_models = get_valid_models() print(valid_models) # list of openai supported llms on litellm expected_models = litellm.open_ai_chat_completion_models + litellm.open_ai_text_completion_models assert(valid_models == expected_models) # reset replicate env key os.environ = old_environ # test_get_valid_models() def test_bad_key(): key = "bad-key" response = check_valid_key(model="gpt-3.5-turbo", api_key=key) print(response, key) assert(response == False) def test_good_key(): key = os.environ['OPENAI_API_KEY'] response = check_valid_key(model="gpt-3.5-turbo", api_key=key) assert(response == True) # test validate environment def test_validate_environment_empty_model(): api_key = validate_environment() if api_key is None: raise Exception() # test_validate_environment_empty_model() def test_function_to_dict(): print("testing function to dict for get current weather") def get_current_weather(location: str, unit: str): """Get the current weather in a given location Parameters ---------- location : str The city and state, e.g. San Francisco, CA unit : {'celsius', 'fahrenheit'} Temperature unit Returns ------- str a sentence indicating the weather """ if location == "Boston, MA": return "The weather is 12F" function_json = litellm.utils.function_to_dict(get_current_weather) print(function_json) expected_output = { 'name': 'get_current_weather', 'description': 'Get the current weather in a given location', 'parameters': { 'type': 'object', 'properties': { 'location': {'type': 'string', 'description': 'The city and state, e.g. San Francisco, CA'}, 'unit': {'type': 'string', 'description': 'Temperature unit', 'enum': "['fahrenheit', 'celsius']"} }, 'required': ['location', 'unit'] } } print(expected_output) assert function_json['name'] == expected_output["name"] assert function_json["description"] == expected_output["description"] assert function_json["parameters"]["type"] == expected_output["parameters"]["type"] assert function_json["parameters"]["properties"]["location"] == expected_output["parameters"]["properties"]["location"] # the enum can change it can be - which is why we don't assert on unit # {'type': 'string', 'description': 'Temperature unit', 'enum': "['fahrenheit', 'celsius']"} # {'type': 'string', 'description': 'Temperature unit', 'enum': "['celsius', 'fahrenheit']"} assert function_json["parameters"]["required"] == expected_output["parameters"]["required"] print("passed") # test_function_to_dict()