import os, json from enum import Enum import requests import time from typing import Callable from litellm.utils import ModelResponse class AnthropicConstants(Enum): HUMAN_PROMPT = "\n\nHuman:" AI_PROMPT = "\n\nAssistant:" class AnthropicError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message super().__init__( self.message ) # Call the base class constructor with the parameters it needs class AnthropicLLM: def __init__(self, encoding, default_max_tokens_to_sample, logging_obj, api_key=None): self.encoding = encoding self.default_max_tokens_to_sample = default_max_tokens_to_sample self.completion_url = "https://api.anthropic.com/v1/complete" self.api_key = api_key self.logging_obj = logging_obj self.validate_environment(api_key=api_key) def validate_environment( self, api_key ): # set up the environment required to run the model # set the api key if self.api_key == None: raise ValueError( "Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params" ) self.api_key = api_key self.headers = { "accept": "application/json", "anthropic-version": "2023-06-01", "content-type": "application/json", "x-api-key": self.api_key, } def completion( self, model: str, messages: list, model_response: ModelResponse, print_verbose: Callable, optional_params=None, litellm_params=None, logger_fn=None, ): # logic for parsing in - calling - parsing out model completion calls model = model prompt = f"{AnthropicConstants.HUMAN_PROMPT.value}" for message in messages: if "role" in message: if message["role"] == "user": prompt += ( f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}" ) else: prompt += ( f"{AnthropicConstants.AI_PROMPT.value}{message['content']}" ) else: prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}" prompt += f"{AnthropicConstants.AI_PROMPT.value}" if "max_tokens" in optional_params and optional_params["max_tokens"] != float( "inf" ): max_tokens = optional_params["max_tokens"] else: max_tokens = self.default_max_tokens_to_sample data = { "model": model, "prompt": prompt, "max_tokens_to_sample": max_tokens, **optional_params, } ## LOGGING self.logging_obj.pre_call(input=prompt, api_key=self.api_key, additional_args={"complete_input_dict": data}) ## COMPLETION CALL response = requests.post( self.completion_url, headers=self.headers, data=json.dumps(data) ) if "stream" in optional_params and optional_params["stream"] == True: return response.iter_lines() else: ## LOGGING self.logging_obj.post_call(input=prompt, api_key=self.api_key, original_response=response.text, additional_args={"complete_input_dict": data}) print_verbose(f"raw model_response: {response.text}") ## RESPONSE OBJECT completion_response = response.json() if "error" in completion_response: raise AnthropicError( message=completion_response["error"], status_code=response.status_code, ) else: model_response["choices"][0]["message"][ "content" ] = completion_response["completion"] ## CALCULATING USAGE prompt_tokens = len( self.encoding.encode(prompt) ) ##[TODO] use the anthropic tokenizer here completion_tokens = len( self.encoding.encode(model_response["choices"][0]["message"]["content"]) ) ##[TODO] use the anthropic tokenizer here model_response["created"] = time.time() model_response["model"] = model model_response["usage"] = { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens, } return model_response def embedding( self, ): # logic for parsing in - calling - parsing out model embedding calls pass