from openai import AsyncOpenAI import os import pytest @pytest.mark.asyncio async def test_openai_fine_tuning(): """ [PROD Test] Ensures logprobs are returned correctly """ client = AsyncOpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000") # file_name = "openai_batch_completions.jsonl" # _current_dir = os.path.dirname(os.path.abspath(__file__)) # file_path = os.path.join(_current_dir, file_name) # response = await client.files.create( # extra_body={"custom_llm_provider": "azure"}, # file=open(file_path, "rb"), # purpose="fine-tune", # ) # print("response from files.create: {}".format(response)) # # create fine tuning job # ft_job = await client.fine_tuning.jobs.create( # model="gpt-35-turbo-1106", # training_file=response.id, # extra_body={"custom_llm_provider": "azure"}, # ) # print("response from ft job={}".format(ft_job)) # # response from example endpoint # assert ft_job.id == "file-abc123" # get fine tuning job # specific_ft_job = await client.fine_tuning.jobs.retrieve( # fine_tuning_job_id="123", # extra_body={"custom_llm_provider": "azure"}, # ) # list all fine tuning jobs list_ft_jobs = await client.fine_tuning.jobs.list( extra_query={"custom_llm_provider": "azure"} ) # cancel specific fine tuning job cancel_ft_job = await client.fine_tuning.jobs.cancel( fine_tuning_job_id="123", extra_body={"custom_llm_provider": "azure"}, )