import json import os import time import traceback import types from enum import Enum from typing import Callable, Optional import httpx # type: ignore import requests # type: ignore import litellm from litellm.types.llms.cohere import ToolResultObject from litellm.utils import Choices, Message, ModelResponse, Usage from .prompt_templates.factory import cohere_message_pt, cohere_messages_pt_v2 class CohereError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message self.request = httpx.Request(method="POST", url="https://api.cohere.ai/v1/chat") self.response = httpx.Response(status_code=status_code, request=self.request) super().__init__( self.message ) # Call the base class constructor with the parameters it needs class CohereChatConfig: """ Configuration class for Cohere's API interface. Args: preamble (str, optional): When specified, the default Cohere preamble will be replaced with the provided one. chat_history (List[Dict[str, str]], optional): A list of previous messages between the user and the model. generation_id (str, optional): Unique identifier for the generated reply. response_id (str, optional): Unique identifier for the response. conversation_id (str, optional): An alternative to chat_history, creates or resumes a persisted conversation. prompt_truncation (str, optional): Dictates how the prompt will be constructed. Options: 'AUTO', 'AUTO_PRESERVE_ORDER', 'OFF'. connectors (List[Dict[str, str]], optional): List of connectors (e.g., web-search) to enrich the model's reply. search_queries_only (bool, optional): When true, the response will only contain a list of generated search queries. documents (List[Dict[str, str]], optional): A list of relevant documents that the model can cite. temperature (float, optional): A non-negative float that tunes the degree of randomness in generation. max_tokens (int, optional): The maximum number of tokens the model will generate as part of the response. k (int, optional): Ensures only the top k most likely tokens are considered for generation at each step. p (float, optional): Ensures that only the most likely tokens, with total probability mass of p, are considered for generation. frequency_penalty (float, optional): Used to reduce repetitiveness of generated tokens. presence_penalty (float, optional): Used to reduce repetitiveness of generated tokens. tools (List[Dict[str, str]], optional): A list of available tools (functions) that the model may suggest invoking. tool_results (List[Dict[str, Any]], optional): A list of results from invoking tools. seed (int, optional): A seed to assist reproducibility of the model's response. """ preamble: Optional[str] = None chat_history: Optional[list] = None generation_id: Optional[str] = None response_id: Optional[str] = None conversation_id: Optional[str] = None prompt_truncation: Optional[str] = None connectors: Optional[list] = None search_queries_only: Optional[bool] = None documents: Optional[list] = None temperature: Optional[int] = None max_tokens: Optional[int] = None k: Optional[int] = None p: Optional[int] = None frequency_penalty: Optional[int] = None presence_penalty: Optional[int] = None tools: Optional[list] = None tool_results: Optional[list] = None seed: Optional[int] = None def __init__( self, preamble: Optional[str] = None, chat_history: Optional[list] = None, generation_id: Optional[str] = None, response_id: Optional[str] = None, conversation_id: Optional[str] = None, prompt_truncation: Optional[str] = None, connectors: Optional[list] = None, search_queries_only: Optional[bool] = None, documents: Optional[list] = None, temperature: Optional[int] = None, max_tokens: Optional[int] = None, k: Optional[int] = None, p: Optional[int] = None, frequency_penalty: Optional[int] = None, presence_penalty: Optional[int] = None, tools: Optional[list] = None, tool_results: Optional[list] = None, seed: Optional[int] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return { k: v for k, v in cls.__dict__.items() if not k.startswith("__") and not isinstance( v, ( types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod, ), ) and v is not None } def validate_environment(api_key): headers = { "Request-Source": "unspecified:litellm", "accept": "application/json", "content-type": "application/json", } if api_key: headers["Authorization"] = f"Bearer {api_key}" return headers def translate_openai_tool_to_cohere(openai_tool): # cohere tools look like this """ { "name": "query_daily_sales_report", "description": "Connects to a database to retrieve overall sales volumes and sales information for a given day.", "parameter_definitions": { "day": { "description": "Retrieves sales data for this day, formatted as YYYY-MM-DD.", "type": "str", "required": True } } } """ # OpenAI tools look like this """ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } """ cohere_tool = { "name": openai_tool["function"]["name"], "description": openai_tool["function"]["description"], "parameter_definitions": {}, } for param_name, param_def in openai_tool["function"]["parameters"][ "properties" ].items(): required_params = ( openai_tool.get("function", {}).get("parameters", {}).get("required", []) ) cohere_param_def = { "description": param_def.get("description", ""), "type": param_def.get("type", ""), "required": param_name in required_params, } cohere_tool["parameter_definitions"][param_name] = cohere_param_def return cohere_tool def construct_cohere_tool(tools=None): if tools is None: tools = [] cohere_tools = [] for tool in tools: cohere_tool = translate_openai_tool_to_cohere(tool) cohere_tools.append(cohere_tool) return cohere_tools def completion( model: str, messages: list, api_base: str, model_response: ModelResponse, print_verbose: Callable, optional_params: dict, encoding, api_key, logging_obj, litellm_params=None, logger_fn=None, ): headers = validate_environment(api_key) completion_url = api_base model = model most_recent_message, chat_history = cohere_messages_pt_v2( messages=messages, model=model, llm_provider="cohere_chat" ) ## Load Config config = litellm.CohereConfig.get_config() for k, v in config.items(): if ( k not in optional_params ): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in optional_params[k] = v ## Handle Tool Calling if "tools" in optional_params: _is_function_call = True cohere_tools = construct_cohere_tool(tools=optional_params["tools"]) optional_params["tools"] = cohere_tools if isinstance(most_recent_message, dict): optional_params["tool_results"] = [most_recent_message] elif isinstance(most_recent_message, str): optional_params["message"] = most_recent_message data = { "model": model, **optional_params, } ## LOGGING logging_obj.pre_call( input=most_recent_message, api_key=api_key, additional_args={ "complete_input_dict": data, "headers": headers, "api_base": completion_url, }, ) ## COMPLETION CALL response = requests.post( completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False, ) ## error handling for cohere calls if response.status_code != 200: raise CohereError(message=response.text, status_code=response.status_code) if "stream" in optional_params and optional_params["stream"] == True: return response.iter_lines() else: ## LOGGING logging_obj.post_call( input=most_recent_message, api_key=api_key, original_response=response.text, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response.text}") ## RESPONSE OBJECT completion_response = response.json() try: model_response.choices[0].message.content = completion_response["text"] # type: ignore except Exception as e: raise CohereError(message=response.text, status_code=response.status_code) ## Tool calling response cohere_tools_response = completion_response.get("tool_calls", None) if cohere_tools_response is not None and cohere_tools_response is not []: # convert cohere_tools_response to OpenAI response format tool_calls = [] for tool in cohere_tools_response: function_name = tool.get("name", "") generation_id = tool.get("generation_id", "") parameters = tool.get("parameters", {}) tool_call = { "id": f"call_{generation_id}", "type": "function", "function": { "name": function_name, "arguments": json.dumps(parameters), }, } tool_calls.append(tool_call) _message = litellm.Message( tool_calls=tool_calls, content=None, ) model_response.choices[0].message = _message # type: ignore ## CALCULATING USAGE - use cohere `billed_units` for returning usage billed_units = completion_response.get("meta", {}).get("billed_units", {}) prompt_tokens = billed_units.get("input_tokens", 0) completion_tokens = billed_units.get("output_tokens", 0) model_response.created = int(time.time()) model_response.model = model usage = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, ) setattr(model_response, "usage", usage) return model_response