from typing import Dict, List, Optional import litellm from litellm.litellm_core_utils.prompt_templates.factory import ( convert_generic_image_chunk_to_openai_image_obj, convert_to_anthropic_image_obj, ) from litellm.types.llms.openai import AllMessageValues from litellm.types.llms.vertex_ai import ContentType, PartType from ...vertex_ai.gemini.transformation import _gemini_convert_messages_with_history from ...vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexGeminiConfig class GoogleAIStudioGeminiConfig(VertexGeminiConfig): """ Reference: https://ai.google.dev/api/rest/v1beta/GenerationConfig The class `GoogleAIStudioGeminiConfig` provides configuration for the Google AI Studio's Gemini API interface. Below are the parameters: - `temperature` (float): This controls the degree of randomness in token selection. - `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256. - `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95. - `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40. - `response_mime_type` (str): The MIME type of the response. The default value is 'text/plain'. Other values - `application/json`. - `response_schema` (dict): Optional. Output response schema of the generated candidate text when response mime type can have schema. Schema can be objects, primitives or arrays and is a subset of OpenAPI schema. If set, a compatible response_mime_type must also be set. Compatible mimetypes: application/json: Schema for JSON response. - `candidate_count` (int): Number of generated responses to return. - `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response. Note: Please make sure to modify the default parameters as required for your use case. """ temperature: Optional[float] = None max_output_tokens: Optional[int] = None top_p: Optional[float] = None top_k: Optional[int] = None response_mime_type: Optional[str] = None response_schema: Optional[dict] = None candidate_count: Optional[int] = None stop_sequences: Optional[list] = None def __init__( self, temperature: Optional[float] = None, max_output_tokens: Optional[int] = None, top_p: Optional[float] = None, top_k: Optional[int] = None, response_mime_type: Optional[str] = None, response_schema: Optional[dict] = None, candidate_count: Optional[int] = None, stop_sequences: Optional[list] = None, ) -> None: locals_ = locals().copy() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return super().get_config() def get_supported_openai_params(self, model: str) -> List[str]: return [ "temperature", "top_p", "max_tokens", "max_completion_tokens", "stream", "tools", "tool_choice", "functions", "response_format", "n", "stop", "logprobs", "frequency_penalty", "modalities", ] def map_openai_params( self, non_default_params: Dict, optional_params: Dict, model: str, drop_params: bool, ) -> Dict: if litellm.vertex_ai_safety_settings is not None: optional_params["safety_settings"] = litellm.vertex_ai_safety_settings return super().map_openai_params( model=model, non_default_params=non_default_params, optional_params=optional_params, drop_params=drop_params, ) def _transform_messages( self, messages: List[AllMessageValues] ) -> List[ContentType]: """ Google AI Studio Gemini does not support image urls in messages. """ for message in messages: _message_content = message.get("content") if _message_content is not None and isinstance(_message_content, list): _parts: List[PartType] = [] for element in _message_content: if element.get("type") == "image_url": img_element = element _image_url: Optional[str] = None format: Optional[str] = None if isinstance(img_element.get("image_url"), dict): _image_url = img_element["image_url"].get("url") # type: ignore format = img_element["image_url"].get("format") # type: ignore else: _image_url = img_element.get("image_url") # type: ignore if _image_url and "https://" in _image_url: image_obj = convert_to_anthropic_image_obj( _image_url, format=format ) img_element["image_url"] = ( # type: ignore convert_generic_image_chunk_to_openai_image_obj( image_obj ) ) return _gemini_convert_messages_with_history(messages=messages)