import sys, os sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path try: import uvicorn import fastapi except ImportError: import subprocess import sys subprocess.check_call([sys.executable, "-m", "pip", "install", "uvicorn", "fastapi"]) print() print("\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m") print() print() import litellm from fastapi import FastAPI, Request from fastapi.responses import StreamingResponse import json app = FastAPI() user_api_base = None user_model = None user_debug = False user_max_tokens = None user_temperature = None user_telemetry = False #### HELPER FUNCTIONS #### def print_verbose(print_statement): global user_debug if user_debug: print(print_statement) def usage_telemetry(): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off if user_telemetry: data = { "feature": "local_proxy_server" } litellm.utils.litellm_telemetry(data=data) def initialize(model, api_base, debug, temperature, max_tokens, telemetry): global user_model, user_api_base, user_debug, user_max_tokens, user_temperature, user_telemetry user_model = model user_api_base = api_base user_debug = debug user_max_tokens = max_tokens user_temperature = temperature user_telemetry = telemetry usage_telemetry() def deploy_proxy(model, api_base, debug, temperature, max_tokens, telemetry, deploy): # Load .env file # Prepare data for posting data = { "model": model, "api_base": api_base, "debug": debug, "temperature": temperature, "max_tokens": max_tokens, } print(data) # Make post request to the url url = "https://api.litellm.ai/deploy" files = {"file": open(".env", "rb")} print(files) # response = requests.post(url, data=data, files=files) # # Check the status of the request # if response.status_code != 200: # return f"Request to url: {url} failed with status: {response.status_code}" # # Reading the response # response_data = response.json() # print(response_data) # # Do something with response_data return url # for streaming def data_generator(response): print("inside generator") for chunk in response: print(f"chunk: {chunk}") print_verbose(f"returned chunk: {chunk}") yield f"data: {json.dumps(chunk)}\n\n" #### API ENDPOINTS #### @app.get("/models") # if project requires model list def model_list(): return dict( data=[{"id": user_model, "object": "model", "created": 1677610602, "owned_by": "openai"}], object="list", ) @app.post("/completions") async def completion(request: Request): data = await request.json() print_verbose(f"data passed in: {data}") if (user_model is None): raise ValueError("Proxy model needs to be set") data["model"] = user_model if user_api_base: data["api_base"] = user_api_base ## check for custom prompt template ## litellm.register_prompt_template( model=user_model, roles={ "system": { "pre_message": os.getenv("MODEL_SYSTEM_MESSAGE_START_TOKEN", ""), "post_message": os.getenv("MODEL_SYSTEM_MESSAGE_END_TOKEN", ""), }, "assistant": { "pre_message": os.getenv("MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""), "post_message": os.getenv("MODEL_ASSISTANT_MESSAGE_END_TOKEN", "") }, "user": { "pre_message": os.getenv("MODEL_USER_MESSAGE_START_TOKEN", ""), "post_message": os.getenv("MODEL_USER_MESSAGE_END_TOKEN", "") } }, initial_prompt_value=os.getenv("MODEL_PRE_PROMPT", ""), final_prompt_value=os.getenv("MODEL_POST_PROMPT", "") ) response = litellm.text_completion(**data) if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses return StreamingResponse(data_generator(response), media_type='text/event-stream') return response @app.post("/chat/completions") async def chat_completion(request: Request): data = await request.json() print_verbose(f"data passed in: {data}") if (user_model is None): raise ValueError("Proxy model needs to be set") data["model"] = user_model # override with user settings if user_temperature: data["temperature"] = user_temperature if user_max_tokens: data["max_tokens"] = user_max_tokens if user_api_base: data["api_base"] = user_api_base ## check for custom prompt template ## litellm.register_prompt_template( model=user_model, roles={ "system": { "pre_message": os.getenv("MODEL_SYSTEM_MESSAGE_START_TOKEN", ""), "post_message": os.getenv("MODEL_SYSTEM_MESSAGE_END_TOKEN", ""), }, "assistant": { "pre_message": os.getenv("MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""), "post_message": os.getenv("MODEL_ASSISTANT_MESSAGE_END_TOKEN", "") }, "user": { "pre_message": os.getenv("MODEL_USER_MESSAGE_START_TOKEN", ""), "post_message": os.getenv("MODEL_USER_MESSAGE_END_TOKEN", "") } }, initial_prompt_value=os.getenv("MODEL_PRE_PROMPT", ""), final_prompt_value=os.getenv("MODEL_POST_PROMPT", "") ) response = litellm.completion(**data) if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses print("reaches stream") return StreamingResponse(data_generator(response), media_type='text/event-stream') print_verbose(f"response: {response}") return response