import asyncio import os import sys import traceback import tracemalloc from dotenv import load_dotenv load_dotenv() import io import os sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path import litellm.types import litellm.types.utils from litellm.router import Router from typing import Optional from unittest.mock import MagicMock, patch import asyncio import pytest import os import litellm from typing import Callable, Any import tracemalloc import gc from typing import Type from pydantic import BaseModel from litellm.proxy.proxy_server import app async def get_memory_usage() -> float: """Get current memory usage of the process in MB""" import psutil process = psutil.Process(os.getpid()) return process.memory_info().rss / 1024 / 1024 async def run_memory_test(request_func: Callable, name: str) -> None: """ Generic memory test function Args: request_func: Async function that makes the API request name: Name of the test for logging """ memory_before = await get_memory_usage() print(f"\n{name} - Initial memory usage: {memory_before:.2f}MB") for i in range(60 * 4): # 4 minutes all_tasks = [request_func() for _ in range(100)] await asyncio.gather(*all_tasks) current_memory = await get_memory_usage() print(f"Request {i * 100}: Current memory usage: {current_memory:.2f}MB") memory_after = await get_memory_usage() print(f"Final memory usage: {memory_after:.2f}MB") memory_diff = memory_after - memory_before print(f"Memory difference: {memory_diff:.2f}MB") assert memory_diff < 10, f"Memory increased by {memory_diff:.2f}MB" async def make_completion_request(): return await litellm.acompletion( model="openai/gpt-4o", messages=[{"role": "user", "content": "Test message for memory usage"}], api_base="https://exampleopenaiendpoint-production.up.railway.app/", ) async def make_text_completion_request(): return await litellm.atext_completion( model="openai/gpt-4o", prompt="Test message for memory usage", api_base="https://exampleopenaiendpoint-production.up.railway.app/", ) def make_streaming_completion_request(): return litellm.acompletion( model="openai/gpt-4o", messages=[{"role": "user", "content": "Test message for memory usage"}], stream=True, ) @pytest.mark.asyncio @pytest.mark.skip( reason="This test is too slow to run on every commit. We can use this after nightly release" ) async def test_acompletion_memory(): """Test memory usage for litellm.acompletion""" await run_memory_test(make_completion_request, "acompletion") @pytest.mark.asyncio @pytest.mark.skip( reason="This test is too slow to run on every commit. We can use this after nightly release" ) async def test_atext_completion_memory(): """Test memory usage for litellm.atext_completion""" await run_memory_test(make_text_completion_request, "atext_completion") @pytest.mark.skip( reason="This test is too slow to run on every commit. We can use this after nightly release" ) def test_streaming_completion_memory(): """Test memory usage for streaming litellm.acompletion""" run_memory_test(make_streaming_completion_request,"completion") @pytest.mark.skip( reason="This test is too slow to run on every commit. We can use this after nightly release" ) def test_streaming_acompletion_memory(): """Test memory usage for streaming litellm.atext_completion""" run_memory_test(make_streaming_completion_request,"acompletion") litellm_router = Router( model_list=[ { "model_name": "text-gpt-4o", "litellm_params": { "model": "text-completion-openai/gpt-3.5-turbo-instruct-unlimited", "api_base": "https://exampleopenaiendpoint-production.up.railway.app/", }, }, { "model_name": "chat-gpt-4o", "litellm_params": { "model": "openai/gpt-4o", "api_base": "https://exampleopenaiendpoint-production.up.railway.app/", }, }, ] ) async def make_router_atext_completion_request(): return await litellm_router.atext_completion( model="text-gpt-4o", temperature=0.5, frequency_penalty=0.5, prompt="<|fim prefix|> Test message for memory usage <|fim prefix|> Test message for memory usage", api_base="https://exampleopenaiendpoint-production.up.railway.app/", max_tokens=500, ) @pytest.mark.asyncio @pytest.mark.skip( reason="This test is too slow to run on every commit. We can use this after nightly release" ) async def test_router_atext_completion_memory(): """Test memory usage for litellm.atext_completion""" await run_memory_test( make_router_atext_completion_request, "router_atext_completion" ) async def make_router_acompletion_request(): return await litellm_router.acompletion( model="chat-gpt-4o", messages=[{"role": "user", "content": "Test message for memory usage"}], api_base="https://exampleopenaiendpoint-production.up.railway.app/", ) def get_pydantic_objects(): """Get all Pydantic model instances in memory""" return [obj for obj in gc.get_objects() if isinstance(obj, BaseModel)] def analyze_pydantic_snapshot(): """Analyze current Pydantic objects""" objects = get_pydantic_objects() type_counts = {} for obj in objects: type_name = type(obj).__name__ type_counts[type_name] = type_counts.get(type_name, 0) + 1 print("\nPydantic Object Count:") for type_name, count in sorted( type_counts.items(), key=lambda x: x[1], reverse=True ): print(f"{type_name}: {count}") # Print an example object if helpful if count > 1000: # Only look at types with many instances example = next(obj for obj in objects if type(obj).__name__ == type_name) print(f"Example fields: {example.dict().keys()}") from collections import defaultdict def get_blueprint_stats(): # Dictionary to collect lists of blueprint objects by their type name. blueprint_objects = defaultdict(list) for obj in gc.get_objects(): try: # Check for attributes that are typically present on Pydantic model blueprints. if ( hasattr(obj, "__pydantic_fields__") or hasattr(obj, "__pydantic_validator__") or hasattr(obj, "__pydantic_core_schema__") ): typename = type(obj).__name__ blueprint_objects[typename].append(obj) except Exception: # Some objects might cause issues when inspected; skip them. continue # Now calculate count and total shallow size for each type. stats = [] for typename, objs in blueprint_objects.items(): total_size = sum(sys.getsizeof(o) for o in objs) stats.append((typename, len(objs), total_size)) return stats def print_top_blueprints(top_n=10): stats = get_blueprint_stats() # Sort by total_size in descending order. stats.sort(key=lambda x: x[2], reverse=True) print(f"Top {top_n} Pydantic blueprint objects by memory usage (shallow size):") for typename, count, total_size in stats[:top_n]: print( f"{typename}: count = {count}, total shallow size = {total_size / 1024:.2f} KiB" ) # Get one instance of the blueprint object for this type (if available) blueprint_objs = [ obj for obj in gc.get_objects() if type(obj).__name__ == typename ] if blueprint_objs: obj = blueprint_objs[0] # Ensure that tracemalloc is enabled and tracking this allocation. tb = tracemalloc.get_object_traceback(obj) if tb: print("Allocation traceback (most recent call last):") for frame in tb.format(): print(frame) else: print("No allocation traceback available for this object.") else: print("No blueprint objects found for this type.") @pytest.fixture(autouse=True) def cleanup(): """Cleanup after each test""" import gc yield gc.collect()