import os import json from enum import Enum import requests import time from typing import Callable from litellm.utils import ModelResponse class PetalsError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message super().__init__( self.message ) # Call the base class constructor with the parameters it needs PetalsConfig = { "max_new_tokens": 256 } def completion( model: str, messages: list, model_response: ModelResponse, print_verbose: Callable, encoding, logging_obj, optional_params=None, stream=False, litellm_params=None, logger_fn=None, ): try: import torch from transformers import AutoTokenizer from petals import AutoDistributedModelForCausalLM except: raise Exception( "Importing torch, transformers, petals failed\nTry pip installing petals \npip install git+https://github.com/bigscience-workshop/petals" ) model = model tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False, add_bos_token=False) model_obj = AutoDistributedModelForCausalLM.from_pretrained(model) prompt = "" for message in messages: if "role" in message: if message["role"] == "user": prompt += ( f"{message['content']}" ) else: prompt += ( f"{message['content']}" ) else: prompt += f"{message['content']}" ## Load Config for k, v in PetalsConfig.items(): if k not in optional_params: optional_params[k] = v ## LOGGING logging_obj.pre_call( input=prompt, api_key="", additional_args={"complete_input_dict": optional_params}, ) ## COMPLETION CALL inputs = tokenizer(prompt, return_tensors="pt")["input_ids"] # optional params: max_new_tokens=1,temperature=0.9, top_p=0.6 outputs = model_obj.generate(inputs, **optional_params) ## LOGGING logging_obj.post_call( input=prompt, api_key="", original_response=outputs, additional_args={"complete_input_dict": optional_params}, ) ## RESPONSE OBJECT output_text = tokenizer.decode(outputs[0]) model_response["choices"][0]["message"]["content"] = output_text prompt_tokens = len( encoding.encode(prompt) ) completion_tokens = len( encoding.encode(model_response["choices"][0]["message"]["content"]) ) model_response["created"] = time.time() model_response["model"] = model model_response["usage"] = { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens, } return model_response def embedding(): # logic for parsing in - calling - parsing out model embedding calls pass