from typing import Union, List, Dict, Optional from datetime import datetime import litellm class Router: """ Example usage: from litellm import Router model_list = [{ "model_name": "gpt-3.5-turbo", # openai model name "litellm_params": { # params for litellm completion/embedding call "model": "azure/", "api_key": , "api_version": , "api_base": }, "tpm": , e.g. 240000 "rpm": , e.g. 1800 }] router = Router(model_list=model_list) """ model_names: List = [] def __init__(self, model_list: Optional[list]=None, redis_host: Optional[str] = None, redis_port: Optional[int] = None, redis_password: Optional[str] = None, cache_responses: bool = False) -> None: if model_list: self.model_list = model_list self.model_names = [m["model_name"] for m in model_list] if redis_host is not None and redis_port is not None and redis_password is not None: cache_config = { 'type': 'redis', 'host': redis_host, 'port': redis_port, 'password': redis_password } else: # use an in-memory cache cache_config = { "type": "local" } self.cache = litellm.Cache(cache_config) # use Redis for tracking load balancing if cache_responses: litellm.cache = litellm.Cache(**cache_config) # use Redis for caching completion requests litellm.success_callback = [self.deployment_callback] def completion(self, model: str, messages: List[Dict[str, str]], is_retry: Optional[bool] = False, is_fallback: Optional[bool] = False, is_async: Optional[bool] = False, **kwargs): """ Example usage: response = router.completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey, how's it going?"}] """ # pick the one that is available (lowest TPM/RPM) deployment = self.get_available_deployment(model=model, messages=messages) print(f"kwargs: {kwargs}") data = deployment["litellm_params"] data["messages"] = messages print(f"data: {data}") # call via litellm.completion() return litellm.completion(**{**data, **kwargs}) def text_completion(self, model: str, prompt: str, is_retry: Optional[bool] = False, is_fallback: Optional[bool] = False, is_async: Optional[bool] = False, **kwargs): messages=[{"role": "user", "content": prompt}] # pick the one that is available (lowest TPM/RPM) deployment = self.get_available_deployment(model=model, messages=messages) data = deployment["litellm_params"] data["prompt"] = prompt # call via litellm.completion() return litellm.text_completion(**{**data, **kwargs}) def embedding(self, model: str, input: Union[str, List], is_async: Optional[bool] = False, **kwargs) -> Union[List[float], None]: # pick the one that is available (lowest TPM/RPM) deployment = self.get_available_deployment(model=model, input=input) data = deployment["litellm_params"] data["input"] = input # call via litellm.embedding() return litellm.embedding(**{**data, **kwargs}) def set_model_list(self, model_list: list): self.model_list = model_list def get_model_names(self): return self.model_names def deployment_callback( self, kwargs, # kwargs to completion completion_response, # response from completion start_time, end_time # start/end time ): """ Function LiteLLM submits a callback to after a successful completion. Purpose of this is ti update TPM/RPM usage per model """ model_name = kwargs.get('model', None) # i.e. azure/gpt35turbo total_tokens = completion_response['usage']['total_tokens'] self._set_deployment_usage(model_name, total_tokens) def get_available_deployment(self, model: str, messages: Optional[List[Dict[str, str]]]=None, input: Optional[Union[str, List]]=None): """ Returns a deployment with the lowest TPM/RPM usage. """ # get list of potential deployments potential_deployments = [] for item in self.model_list: if item["model_name"] == model: potential_deployments.append(item) # set first model as current model deployment = potential_deployments[0] # get model tpm, rpm limits tpm = deployment["tpm"] rpm = deployment["rpm"] # get deployment current usage current_tpm, current_rpm = self._get_deployment_usage(deployment_name=deployment["litellm_params"]["model"]) # get encoding if messages: token_count = litellm.token_counter(model=deployment["model_name"], messages=messages) elif input: if isinstance(input, List): input_text = "".join(text for text in input) else: input_text = input token_count = litellm.token_counter(model=deployment["model_name"], text=input_text) # if at model limit, return lowest used if current_tpm + token_count > tpm or current_rpm + 1 >= rpm: # ----------------------- # Find lowest used model # ---------------------- lowest_tpm = float('inf') deployment = None # Go through all the models to get tpm, rpm for item in potential_deployments: item_tpm, item_rpm = self._get_deployment_usage(deployment_name=item["litellm_params"]["model"]) if item_tpm == 0: return item elif item_tpm + token_count > item["tpm"] or item_rpm + 1 >= item["rpm"]: continue elif item_tpm < lowest_tpm: lowest_tpm = item_tpm deployment = item # if none, raise exception if deployment is None: raise ValueError(f"No models available.") # return model return deployment def _get_deployment_usage( self, deployment_name: str ): # ------------ # Setup values # ------------ current_minute = datetime.now().strftime("%H-%M") tpm_key = f'{deployment_name}:tpm:{current_minute}' rpm_key = f'{deployment_name}:rpm:{current_minute}' # ------------ # Return usage # ------------ tpm = self.cache.get_cache(tpm_key) rpm = self.cache.get_cache(rpm_key) if tpm is None: tpm = 0 if rpm is None: rpm = 0 return int(tpm), int(rpm) def increment(self, key: str, increment_value: int): # get value cached_value = self.cache.get_cache(key) # update value try: cached_value = cached_value + increment_value except: cached_value = increment_value # save updated value self.cache.add_cache(result=cached_value, cache_key=key) def _set_deployment_usage( self, model_name: str, total_tokens: int ): # ------------ # Setup values # ------------ current_minute = datetime.now().strftime("%H-%M") tpm_key = f'{model_name}:tpm:{current_minute}' rpm_key = f'{model_name}:rpm:{current_minute}' # ------------ # Update usage # ------------ self.increment(tpm_key, total_tokens) self.increment(rpm_key, 1)