import json import os import uuid from datetime import datetime from re import S from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, TypedDict, Union import httpx from pydantic import BaseModel, Field import litellm from litellm._logging import verbose_logger from litellm.integrations.custom_logger import CustomLogger from litellm.integrations.gcs_bucket_base import GCSBucketBase from litellm.litellm_core_utils.logging_utils import ( convert_litellm_response_object_to_dict, ) from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler from litellm.proxy._types import CommonProxyErrors, SpendLogsMetadata, SpendLogsPayload from litellm.types.utils import ( StandardCallbackDynamicParams, StandardLoggingMetadata, StandardLoggingPayload, ) if TYPE_CHECKING: from litellm.llms.vertex_ai_and_google_ai_studio.vertex_llm_base import VertexBase else: VertexBase = Any class GCSLoggingConfig(TypedDict): bucket_name: str vertex_instance: VertexBase path_service_account: str class GCSBucketLogger(GCSBucketBase): def __init__(self, bucket_name: Optional[str] = None) -> None: from litellm.proxy.proxy_server import premium_user super().__init__(bucket_name=bucket_name) self.vertex_instances: Dict[str, VertexBase] = {} if premium_user is not True: raise ValueError( f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}" ) if self.path_service_account_json is None: raise ValueError( "GCS_PATH_SERVICE_ACCOUNT is not set in the environment, but GCS Bucket is being used as a logging callback. Please set 'GCS_PATH_SERVICE_ACCOUNT' in the environment." ) pass #### ASYNC #### async def async_log_success_event(self, kwargs, response_obj, start_time, end_time): from litellm.proxy.proxy_server import premium_user if premium_user is not True: raise ValueError( f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}" ) try: verbose_logger.debug( "GCS Logger: async_log_success_event logging kwargs: %s, response_obj: %s", kwargs, response_obj, ) gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config( kwargs ) headers = await self.construct_request_headers( vertex_instance=gcs_logging_config["vertex_instance"], service_account_json=gcs_logging_config["path_service_account"], ) bucket_name = gcs_logging_config["bucket_name"] logging_payload: Optional[StandardLoggingPayload] = kwargs.get( "standard_logging_object", None ) if logging_payload is None: raise ValueError("standard_logging_object not found in kwargs") json_logged_payload = json.dumps(logging_payload, default=str) # Get the current date current_date = datetime.now().strftime("%Y-%m-%d") # Modify the object_name to include the date-based folder object_name = f"{current_date}/{response_obj['id']}" response = await self.async_httpx_client.post( headers=headers, url=f"https://storage.googleapis.com/upload/storage/v1/b/{bucket_name}/o?uploadType=media&name={object_name}", data=json_logged_payload, ) if response.status_code != 200: verbose_logger.error("GCS Bucket logging error: %s", str(response.text)) verbose_logger.debug("GCS Bucket response %s", response) verbose_logger.debug("GCS Bucket status code %s", response.status_code) verbose_logger.debug("GCS Bucket response.text %s", response.text) except Exception as e: verbose_logger.exception(f"GCS Bucket logging error: {str(e)}") async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time): from litellm.proxy.proxy_server import premium_user if premium_user is not True: raise ValueError( f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}" ) try: verbose_logger.debug( "GCS Logger: async_log_failure_event logging kwargs: %s, response_obj: %s", kwargs, response_obj, ) gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config( kwargs ) headers = await self.construct_request_headers( vertex_instance=gcs_logging_config["vertex_instance"], service_account_json=gcs_logging_config["path_service_account"], ) bucket_name = gcs_logging_config["bucket_name"] logging_payload: Optional[StandardLoggingPayload] = kwargs.get( "standard_logging_object", None ) if logging_payload is None: raise ValueError("standard_logging_object not found in kwargs") _litellm_params = kwargs.get("litellm_params") or {} metadata = _litellm_params.get("metadata") or {} json_logged_payload = json.dumps(logging_payload, default=str) # Get the current date current_date = datetime.now().strftime("%Y-%m-%d") # Modify the object_name to include the date-based folder object_name = f"{current_date}/failure-{uuid.uuid4().hex}" if "gcs_log_id" in metadata: object_name = metadata["gcs_log_id"] response = await self.async_httpx_client.post( headers=headers, url=f"https://storage.googleapis.com/upload/storage/v1/b/{bucket_name}/o?uploadType=media&name={object_name}", data=json_logged_payload, ) if response.status_code != 200: verbose_logger.error("GCS Bucket logging error: %s", str(response.text)) verbose_logger.debug("GCS Bucket response %s", response) verbose_logger.debug("GCS Bucket status code %s", response.status_code) verbose_logger.debug("GCS Bucket response.text %s", response.text) except Exception as e: verbose_logger.exception(f"GCS Bucket logging error: {str(e)}") async def get_gcs_logging_config( self, kwargs: Optional[Dict[str, Any]] = {} ) -> GCSLoggingConfig: """ This function is used to get the GCS logging config for the GCS Bucket Logger. It checks if the dynamic parameters are provided in the kwargs and uses them to get the GCS logging config. If no dynamic parameters are provided, it uses the default values. """ if kwargs is None: kwargs = {} standard_callback_dynamic_params: Optional[StandardCallbackDynamicParams] = ( kwargs.get("standard_callback_dynamic_params", None) ) if standard_callback_dynamic_params is not None: verbose_logger.debug("Using dynamic GCS logging") verbose_logger.debug( "standard_callback_dynamic_params: %s", standard_callback_dynamic_params ) bucket_name: str = ( standard_callback_dynamic_params.get("gcs_bucket_name", None) or self.BUCKET_NAME ) path_service_account: str = ( standard_callback_dynamic_params.get("gcs_path_service_account", None) or self.path_service_account_json ) vertex_instance = await self.get_or_create_vertex_instance( credentials=path_service_account ) else: # If no dynamic parameters, use the default instance bucket_name = self.BUCKET_NAME path_service_account = self.path_service_account_json vertex_instance = await self.get_or_create_vertex_instance( credentials=path_service_account ) return GCSLoggingConfig( bucket_name=bucket_name, vertex_instance=vertex_instance, path_service_account=path_service_account, ) async def get_or_create_vertex_instance(self, credentials: str) -> VertexBase: """ This function is used to get the Vertex instance for the GCS Bucket Logger. It checks if the Vertex instance is already created and cached, if not it creates a new instance and caches it. """ from litellm.llms.vertex_ai_and_google_ai_studio.vertex_llm_base import ( VertexBase, ) if credentials not in self.vertex_instances: vertex_instance = VertexBase() await vertex_instance._ensure_access_token_async( credentials=credentials, project_id=None, custom_llm_provider="vertex_ai", ) self.vertex_instances[credentials] = vertex_instance return self.vertex_instances[credentials] async def download_gcs_object(self, object_name: str, **kwargs): """ Download an object from GCS. https://cloud.google.com/storage/docs/downloading-objects#download-object-json """ try: gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config( kwargs=kwargs ) headers = await self.construct_request_headers( vertex_instance=gcs_logging_config["vertex_instance"], service_account_json=gcs_logging_config["path_service_account"], ) bucket_name = gcs_logging_config["bucket_name"] url = f"https://storage.googleapis.com/storage/v1/b/{bucket_name}/o/{object_name}?alt=media" # Send the GET request to download the object response = await self.async_httpx_client.get(url=url, headers=headers) if response.status_code != 200: verbose_logger.error( "GCS object download error: %s", str(response.text) ) return None verbose_logger.debug( "GCS object download response status code: %s", response.status_code ) # Return the content of the downloaded object return response.content except Exception as e: verbose_logger.error("GCS object download error: %s", str(e)) return None async def delete_gcs_object(self, object_name: str, **kwargs): """ Delete an object from GCS. """ try: gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config( kwargs=kwargs ) headers = await self.construct_request_headers( vertex_instance=gcs_logging_config["vertex_instance"], service_account_json=gcs_logging_config["path_service_account"], ) bucket_name = gcs_logging_config["bucket_name"] url = f"https://storage.googleapis.com/storage/v1/b/{bucket_name}/o/{object_name}" # Send the DELETE request to delete the object response = await self.async_httpx_client.delete(url=url, headers=headers) if (response.status_code != 200) or (response.status_code != 204): verbose_logger.error( "GCS object delete error: %s, status code: %s", str(response.text), response.status_code, ) return None verbose_logger.debug( "GCS object delete response status code: %s, response: %s", response.status_code, response.text, ) # Return the content of the downloaded object return response.text except Exception as e: verbose_logger.error("GCS object download error: %s", str(e)) return None