import asyncio import json import os import time import types from typing import Any, Callable, Optional, Tuple, Union import httpx # type: ignore import requests # type: ignore import litellm from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler from litellm.utils import CustomStreamWrapper, ModelResponse, Usage from .prompt_templates.factory import custom_prompt, prompt_factory class ReplicateError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message self.request = httpx.Request( method="POST", url="https://api.replicate.com/v1/deployments" ) self.response = httpx.Response(status_code=status_code, request=self.request) super().__init__( self.message ) # Call the base class constructor with the parameters it needs class ReplicateConfig: """ Reference: https://replicate.com/meta/llama-2-70b-chat/api - `prompt` (string): The prompt to send to the model. - `system_prompt` (string): The system prompt to send to the model. This is prepended to the prompt and helps guide system behavior. Default value: `You are a helpful assistant`. - `max_new_tokens` (integer): Maximum number of tokens to generate. Typically, a word is made up of 2-3 tokens. Default value: `128`. - `min_new_tokens` (integer): Minimum number of tokens to generate. To disable, set to `-1`. A word is usually 2-3 tokens. Default value: `-1`. - `temperature` (number): Adjusts the randomness of outputs. Values greater than 1 increase randomness, 0 is deterministic, and 0.75 is a reasonable starting value. Default value: `0.75`. - `top_p` (number): During text decoding, it samples from the top `p` percentage of most likely tokens. Reduce this to ignore less probable tokens. Default value: `0.9`. - `top_k` (integer): During text decoding, samples from the top `k` most likely tokens. Reduce this to ignore less probable tokens. Default value: `50`. - `stop_sequences` (string): A comma-separated list of sequences to stop generation at. For example, inputting ',' will cease generation at the first occurrence of either 'end' or ''. - `seed` (integer): This is the seed for the random generator. Leave it blank to randomize the seed. - `debug` (boolean): If set to `True`, it provides debugging output in logs. Please note that Replicate's mapping of these parameters can be inconsistent across different models, indicating that not all of these parameters may be available for use with all models. """ system_prompt: Optional[str] = None max_new_tokens: Optional[int] = None min_new_tokens: Optional[int] = None temperature: Optional[int] = None top_p: Optional[int] = None top_k: Optional[int] = None stop_sequences: Optional[str] = None seed: Optional[int] = None debug: Optional[bool] = None def __init__( self, system_prompt: Optional[str] = None, max_new_tokens: Optional[int] = None, min_new_tokens: Optional[int] = None, temperature: Optional[int] = None, top_p: Optional[int] = None, top_k: Optional[int] = None, stop_sequences: Optional[str] = None, seed: Optional[int] = None, debug: Optional[bool] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return { k: v for k, v in cls.__dict__.items() if not k.startswith("__") and not isinstance( v, ( types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod, ), ) and v is not None } # Function to start a prediction and get the prediction URL def start_prediction( version_id, input_data, api_token, api_base, logging_obj, print_verbose ): base_url = api_base if "deployments" in version_id: print_verbose("\nLiteLLM: Request to custom replicate deployment") version_id = version_id.replace("deployments/", "") base_url = f"https://api.replicate.com/v1/deployments/{version_id}" print_verbose(f"Deployment base URL: {base_url}\n") else: # assume it's a model base_url = f"https://api.replicate.com/v1/models/{version_id}" headers = { "Authorization": f"Token {api_token}", "Content-Type": "application/json", } initial_prediction_data = { "input": input_data, } if ":" in version_id and len(version_id) > 64: model_parts = version_id.split(":") if ( len(model_parts) > 1 and len(model_parts[1]) == 64 ): ## checks if model name has a 64 digit code - e.g. "meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3" initial_prediction_data["version"] = model_parts[1] ## LOGGING logging_obj.pre_call( input=input_data["prompt"], api_key="", additional_args={ "complete_input_dict": initial_prediction_data, "headers": headers, "api_base": base_url, }, ) response = requests.post( f"{base_url}/predictions", json=initial_prediction_data, headers=headers ) if response.status_code == 201: response_data = response.json() return response_data.get("urls", {}).get("get") else: raise ReplicateError( response.status_code, f"Failed to start prediction {response.text}" ) async def async_start_prediction( version_id, input_data, api_token, api_base, logging_obj, print_verbose, http_handler: AsyncHTTPHandler, ) -> str: base_url = api_base if "deployments" in version_id: print_verbose("\nLiteLLM: Request to custom replicate deployment") version_id = version_id.replace("deployments/", "") base_url = f"https://api.replicate.com/v1/deployments/{version_id}" print_verbose(f"Deployment base URL: {base_url}\n") else: # assume it's a model base_url = f"https://api.replicate.com/v1/models/{version_id}" headers = { "Authorization": f"Token {api_token}", "Content-Type": "application/json", } initial_prediction_data = { "input": input_data, } if ":" in version_id and len(version_id) > 64: model_parts = version_id.split(":") if ( len(model_parts) > 1 and len(model_parts[1]) == 64 ): ## checks if model name has a 64 digit code - e.g. "meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3" initial_prediction_data["version"] = model_parts[1] ## LOGGING logging_obj.pre_call( input=input_data["prompt"], api_key="", additional_args={ "complete_input_dict": initial_prediction_data, "headers": headers, "api_base": base_url, }, ) response = await http_handler.post( url="{}/predictions".format(base_url), data=json.dumps(initial_prediction_data), headers=headers, ) if response.status_code == 201: response_data = response.json() return response_data.get("urls", {}).get("get") else: raise ReplicateError( response.status_code, f"Failed to start prediction {response.text}" ) # Function to handle prediction response (non-streaming) def handle_prediction_response(prediction_url, api_token, print_verbose): output_string = "" headers = { "Authorization": f"Token {api_token}", "Content-Type": "application/json", } status = "" logs = "" while True and (status not in ["succeeded", "failed", "canceled"]): print_verbose(f"replicate: polling endpoint: {prediction_url}") time.sleep(0.5) response = requests.get(prediction_url, headers=headers) if response.status_code == 200: response_data = response.json() if "output" in response_data: output_string = "".join(response_data["output"]) print_verbose(f"Non-streamed output:{output_string}") status = response_data.get("status", None) logs = response_data.get("logs", "") if status == "failed": replicate_error = response_data.get("error", "") raise ReplicateError( status_code=400, message=f"Error: {replicate_error}, \nReplicate logs:{logs}", ) else: # this can fail temporarily but it does not mean the replicate request failed, replicate request fails when status=="failed" print_verbose("Replicate: Failed to fetch prediction status and output.") return output_string, logs async def async_handle_prediction_response( prediction_url, api_token, print_verbose, http_handler: AsyncHTTPHandler ) -> Tuple[str, Any]: output_string = "" headers = { "Authorization": f"Token {api_token}", "Content-Type": "application/json", } status = "" logs = "" while True and (status not in ["succeeded", "failed", "canceled"]): print_verbose(f"replicate: polling endpoint: {prediction_url}") await asyncio.sleep(0.5) # prevent replicate rate limit errors response = await http_handler.get(prediction_url, headers=headers) if response.status_code == 200: response_data = response.json() if "output" in response_data: output_string = "".join(response_data["output"]) print_verbose(f"Non-streamed output:{output_string}") status = response_data.get("status", None) logs = response_data.get("logs", "") if status == "failed": replicate_error = response_data.get("error", "") raise ReplicateError( status_code=400, message=f"Error: {replicate_error}, \nReplicate logs:{logs}", ) else: # this can fail temporarily but it does not mean the replicate request failed, replicate request fails when status=="failed" print_verbose("Replicate: Failed to fetch prediction status and output.") return output_string, logs # Function to handle prediction response (streaming) def handle_prediction_response_streaming(prediction_url, api_token, print_verbose): previous_output = "" output_string = "" headers = { "Authorization": f"Token {api_token}", "Content-Type": "application/json", } status = "" while True and (status not in ["succeeded", "failed", "canceled"]): time.sleep(0.5) # prevent being rate limited by replicate print_verbose(f"replicate: polling endpoint: {prediction_url}") response = requests.get(prediction_url, headers=headers) if response.status_code == 200: response_data = response.json() status = response_data["status"] if "output" in response_data: try: output_string = "".join(response_data["output"]) except Exception as e: raise ReplicateError( status_code=422, message="Unable to parse response. Got={}".format( response_data["output"] ), ) new_output = output_string[len(previous_output) :] print_verbose(f"New chunk: {new_output}") yield {"output": new_output, "status": status} previous_output = output_string status = response_data["status"] if status == "failed": replicate_error = response_data.get("error", "") raise ReplicateError( status_code=400, message=f"Error: {replicate_error}" ) else: # this can fail temporarily but it does not mean the replicate request failed, replicate request fails when status=="failed" print_verbose( f"Replicate: Failed to fetch prediction status and output.{response.status_code}{response.text}" ) # Function to handle prediction response (streaming) async def async_handle_prediction_response_streaming( prediction_url, api_token, print_verbose ): http_handler = AsyncHTTPHandler(concurrent_limit=1) previous_output = "" output_string = "" headers = { "Authorization": f"Token {api_token}", "Content-Type": "application/json", } status = "" while True and (status not in ["succeeded", "failed", "canceled"]): await asyncio.sleep(0.5) # prevent being rate limited by replicate print_verbose(f"replicate: polling endpoint: {prediction_url}") response = await http_handler.get(prediction_url, headers=headers) if response.status_code == 200: response_data = response.json() status = response_data["status"] if "output" in response_data: try: output_string = "".join(response_data["output"]) except Exception as e: raise ReplicateError( status_code=422, message="Unable to parse response. Got={}".format( response_data["output"] ), ) new_output = output_string[len(previous_output) :] print_verbose(f"New chunk: {new_output}") yield {"output": new_output, "status": status} previous_output = output_string status = response_data["status"] if status == "failed": replicate_error = response_data.get("error", "") raise ReplicateError( status_code=400, message=f"Error: {replicate_error}" ) else: # this can fail temporarily but it does not mean the replicate request failed, replicate request fails when status=="failed" print_verbose( f"Replicate: Failed to fetch prediction status and output.{response.status_code}{response.text}" ) # Function to extract version ID from model string def model_to_version_id(model): if ":" in model: split_model = model.split(":") return split_model[1] return model def process_response( model_response: ModelResponse, result: str, model: str, encoding: Any, prompt: str, ) -> ModelResponse: if len(result) == 0: # edge case, where result from replicate is empty result = " " ## Building RESPONSE OBJECT if len(result) > 1: model_response.choices[0].message.content = result # type :ignore # Calculate usage prompt_tokens = len(encoding.encode(prompt, disallowed_special=())) completion_tokens = len( encoding.encode( model_response["choices"][0]["message"].get("content", ""), disallowed_special=(), ) ) model_response.model = "replicate/" + model usage = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, ) setattr(model_response, "usage", usage) return model_response # Main function for prediction completion def completion( model: str, messages: list, api_base: str, model_response: ModelResponse, print_verbose: Callable, optional_params: dict, logging_obj, api_key, encoding, custom_prompt_dict={}, litellm_params=None, logger_fn=None, acompletion=None, ) -> Union[ModelResponse, CustomStreamWrapper]: # Start a prediction and get the prediction URL version_id = model_to_version_id(model) ## Load Config config = litellm.ReplicateConfig.get_config() for k, v in config.items(): if ( k not in optional_params ): # completion(top_k=3) > replicate_config(top_k=3) <- allows for dynamic variables to be passed in optional_params[k] = v system_prompt = None if optional_params is not None and "supports_system_prompt" in optional_params: supports_sys_prompt = optional_params.pop("supports_system_prompt") else: supports_sys_prompt = False if supports_sys_prompt: for i in range(len(messages)): if messages[i]["role"] == "system": first_sys_message = messages.pop(i) system_prompt = first_sys_message["content"] break if model in custom_prompt_dict: # check if the model has a registered custom prompt model_prompt_details = custom_prompt_dict[model] prompt = custom_prompt( role_dict=model_prompt_details.get("roles", {}), initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""), final_prompt_value=model_prompt_details.get("final_prompt_value", ""), bos_token=model_prompt_details.get("bos_token", ""), eos_token=model_prompt_details.get("eos_token", ""), messages=messages, ) else: prompt = prompt_factory(model=model, messages=messages) if prompt is None or not isinstance(prompt, str): raise ReplicateError( status_code=400, message="LiteLLM Error - prompt is not a string - {}".format(prompt), ) # If system prompt is supported, and a system prompt is provided, use it if system_prompt is not None: input_data = { "prompt": prompt, "system_prompt": system_prompt, **optional_params, } # Otherwise, use the prompt as is else: input_data = {"prompt": prompt, **optional_params} if acompletion is not None and acompletion == True: return async_completion( model_response=model_response, model=model, prompt=prompt, encoding=encoding, optional_params=optional_params, version_id=version_id, input_data=input_data, api_key=api_key, api_base=api_base, logging_obj=logging_obj, print_verbose=print_verbose, ) # type: ignore ## COMPLETION CALL ## Replicate Compeltion calls have 2 steps ## Step1: Start Prediction: gets a prediction url ## Step2: Poll prediction url for response ## Step2: is handled with and without streaming model_response.created = int( time.time() ) # for pricing this must remain right before calling api prediction_url = start_prediction( version_id, input_data, api_key, api_base, logging_obj=logging_obj, print_verbose=print_verbose, ) print_verbose(prediction_url) # Handle the prediction response (streaming or non-streaming) if "stream" in optional_params and optional_params["stream"] == True: print_verbose("streaming request") _response = handle_prediction_response_streaming( prediction_url, api_key, print_verbose ) return CustomStreamWrapper(_response, model, logging_obj=logging_obj, custom_llm_provider="replicate") # type: ignore else: result, logs = handle_prediction_response( prediction_url, api_key, print_verbose ) ## LOGGING logging_obj.post_call( input=prompt, api_key="", original_response=result, additional_args={ "complete_input_dict": input_data, "logs": logs, "api_base": prediction_url, }, ) print_verbose(f"raw model_response: {result}") return process_response( model_response=model_response, result=result, model=model, encoding=encoding, prompt=prompt, ) async def async_completion( model_response: ModelResponse, model: str, prompt: str, encoding, optional_params: dict, version_id, input_data, api_key, api_base, logging_obj, print_verbose, ) -> Union[ModelResponse, CustomStreamWrapper]: http_handler = AsyncHTTPHandler(concurrent_limit=1) prediction_url = await async_start_prediction( version_id, input_data, api_key, api_base, logging_obj=logging_obj, print_verbose=print_verbose, http_handler=http_handler, ) if "stream" in optional_params and optional_params["stream"] == True: _response = async_handle_prediction_response_streaming( prediction_url, api_key, print_verbose ) return CustomStreamWrapper(_response, model, logging_obj=logging_obj, custom_llm_provider="replicate") # type: ignore result, logs = await async_handle_prediction_response( prediction_url, api_key, print_verbose, http_handler=http_handler ) return process_response( model_response=model_response, result=result, model=model, encoding=encoding, prompt=prompt, ) # # Example usage: # response = completion( # api_key="", # messages=[{"content": "good morning"}], # model="replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf", # model_response=ModelResponse(), # print_verbose=print, # logging_obj=print, # stub logging_obj # optional_params={"stream": False} # ) # print(response)