import sys, os import traceback from dotenv import load_dotenv load_dotenv() import os sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path import pytest import litellm from litellm import embedding, completion litellm.vertex_project = "hardy-device-386718" litellm.vertex_location = "us-central1" litellm.set_verbose = True user_message = "what's the weather in SF " messages = [{ "content": user_message,"role": "user"}] # def logger_fn(user_model_dict): # print(f"user_model_dict: {user_model_dict}") # chat-bison # response = completion(model="chat-bison", messages=messages, temperature=0.5, top_p=0.1) # print(response) # text-bison # response = completion(model="text-bison@001", messages=messages) # print(response) # response = completion(model="text-bison@001", messages=messages, temperature=0.1, logger_fn=logger_fn) # print(response) # response = completion(model="text-bison@001", messages=messages, temperature=0.4, top_p=0.1, logger_fn=logger_fn) # print(response) # response = completion(model="text-bison@001", messages=messages, temperature=0.8, top_p=0.4, top_k=30, logger_fn=logger_fn) # print(response) # chat_model = ChatModel.from_pretrained("chat-bison@001") # parameters = { # "temperature": 0.2, # "max_output_tokens": 256, # "top_p": 0.8, # "top_k": 40 # } # chat = chat_model.start_chat() # response = chat.send_message("who are u? write a sentence", **parameters) # print(f"Response from Model: {response.text}")