# test that the proxy actually does exception mapping to the OpenAI format import sys, os from dotenv import load_dotenv load_dotenv() import os, io, asyncio sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path import pytest import litellm, openai from fastapi.testclient import TestClient from fastapi import FastAPI from litellm.proxy.proxy_server import ( router, save_worker_config, initialize, ) # Replace with the actual module where your FastAPI router is defined @pytest.fixture def client(): filepath = os.path.dirname(os.path.abspath(__file__)) config_fp = f"{filepath}/test_configs/test_bad_config.yaml" asyncio.run(initialize(config=config_fp)) from litellm.proxy.proxy_server import app return TestClient(app) # raise openai.AuthenticationError def test_chat_completion_exception(client): try: # Your test data test_data = { "model": "gpt-3.5-turbo", "messages": [ {"role": "user", "content": "hi"}, ], "max_tokens": 10, } response = client.post("/chat/completions", json=test_data) json_response = response.json() print("keys in json response", json_response.keys()) assert json_response.keys() == {"error"} # make an openai client to call _make_status_error_from_response openai_client = openai.OpenAI(api_key="anything") openai_exception = openai_client._make_status_error_from_response( response=response ) assert isinstance(openai_exception, openai.AuthenticationError) except Exception as e: pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}") # raise openai.AuthenticationError def test_chat_completion_exception_azure(client): try: # Your test data test_data = { "model": "azure-gpt-3.5-turbo", "messages": [ {"role": "user", "content": "hi"}, ], "max_tokens": 10, } response = client.post("/chat/completions", json=test_data) json_response = response.json() print("keys in json response", json_response.keys()) assert json_response.keys() == {"error"} # make an openai client to call _make_status_error_from_response openai_client = openai.OpenAI(api_key="anything") openai_exception = openai_client._make_status_error_from_response( response=response ) print(openai_exception) assert isinstance(openai_exception, openai.AuthenticationError) except Exception as e: pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}") # raise openai.AuthenticationError def test_embedding_auth_exception_azure(client): try: # Your test data test_data = {"model": "azure-embedding", "input": ["hi"]} response = client.post("/embeddings", json=test_data) print("Response from proxy=", response) json_response = response.json() print("keys in json response", json_response.keys()) assert json_response.keys() == {"error"} # make an openai client to call _make_status_error_from_response openai_client = openai.OpenAI(api_key="anything") openai_exception = openai_client._make_status_error_from_response( response=response ) print("Exception raised=", openai_exception) assert isinstance(openai_exception, openai.AuthenticationError) except Exception as e: pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}") # raise openai.BadRequestError # chat/completions openai def test_exception_openai_bad_model(client): try: # Your test data test_data = { "model": "azure/GPT-12", "messages": [ {"role": "user", "content": "hi"}, ], "max_tokens": 10, } response = client.post("/chat/completions", json=test_data) json_response = response.json() print("keys in json response", json_response.keys()) assert json_response.keys() == {"error"} # make an openai client to call _make_status_error_from_response openai_client = openai.OpenAI(api_key="anything") openai_exception = openai_client._make_status_error_from_response( response=response ) print("Type of exception=", type(openai_exception)) assert isinstance(openai_exception, openai.BadRequestError) except Exception as e: pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}") # chat/completions any model def test_chat_completion_exception_any_model(client): try: # Your test data test_data = { "model": "Lite-GPT-12", "messages": [ {"role": "user", "content": "hi"}, ], "max_tokens": 10, } response = client.post("/chat/completions", json=test_data) json_response = response.json() assert json_response.keys() == {"error"} # make an openai client to call _make_status_error_from_response openai_client = openai.OpenAI(api_key="anything") openai_exception = openai_client._make_status_error_from_response( response=response ) print("Exception raised=", openai_exception) assert isinstance(openai_exception, openai.BadRequestError) except Exception as e: pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}") # embeddings any model def test_embedding_exception_any_model(client): try: # Your test data test_data = {"model": "Lite-GPT-12", "input": ["hi"]} response = client.post("/embeddings", json=test_data) print("Response from proxy=", response) print(response.json()) json_response = response.json() print("keys in json response", json_response.keys()) assert json_response.keys() == {"error"} # make an openai client to call _make_status_error_from_response openai_client = openai.OpenAI(api_key="anything") openai_exception = openai_client._make_status_error_from_response( response=response ) print("Exception raised=", openai_exception) assert isinstance(openai_exception, openai.BadRequestError) except Exception as e: pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}") # raise openai.BadRequestError def test_chat_completion_exception_azure_context_window(client): try: # Your test data test_data = { "model": "working-azure-gpt-3.5-turbo", "messages": [ {"role": "user", "content": "hi" * 10000}, ], "max_tokens": 10, } response = None response = client.post("/chat/completions", json=test_data) print("got response from server", response) json_response = response.json() print("keys in json response", json_response.keys()) assert json_response.keys() == {"error"} assert json_response == { "error": { "message": "AzureException - Error code: 400 - {'error': {'message': \"This model's maximum context length is 4096 tokens. However, your messages resulted in 10007 tokens. Please reduce the length of the messages.\", 'type': 'invalid_request_error', 'param': 'messages', 'code': 'context_length_exceeded'}}", "type": None, "param": None, "code": 400, } } # make an openai client to call _make_status_error_from_response openai_client = openai.OpenAI(api_key="anything") openai_exception = openai_client._make_status_error_from_response( response=response ) print("exception from proxy", openai_exception) assert isinstance(openai_exception, openai.BadRequestError) print("passed exception is of type BadRequestError") except Exception as e: pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")