import os, json from enum import Enum import requests import time from typing import Callable from litellm.utils import ModelResponse class AlephAlphaError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message super().__init__( self.message ) # Call the base class constructor with the parameters it needs class AlephAlphaLLM: def __init__( self, encoding, default_max_tokens_to_sample, logging_obj, api_key=None ): self.encoding = encoding self.default_max_tokens_to_sample = default_max_tokens_to_sample self.completion_url = "https://api.aleph-alpha.com/complete" self.api_key = api_key self.logging_obj = logging_obj self.validate_environment(api_key=api_key) def validate_environment( self, api_key ): # set up the environment required to run the model # set the api key if self.api_key == None: raise ValueError( "Missing Aleph Alpha API Key - A call is being made to Aleph Alpha but no key is set either in the environment variables or via params" ) self.api_key = api_key self.headers = { "accept": "application/json", "content-type": "application/json", "Authorization": "Bearer " + self.api_key, } def completion( self, model: str, messages: list, model_response: ModelResponse, print_verbose: Callable, optional_params=None, litellm_params=None, logger_fn=None, ): # logic for parsing in - calling - parsing out model completion calls model = model prompt = "" if "control" in model: # follow the ###Instruction / ###Response format for idx, message in enumerate(messages): if "role" in message: if idx == 0: # set first message as instruction (required), let later user messages be input prompt += f"###Instruction: {message['content']}" else: if message["role"] == "system": prompt += ( f"###Instruction: {message['content']}" ) elif message["role"] == "user": prompt += ( f"###Input: {message['content']}" ) else: prompt += ( f"###Response: {message['content']}" ) else: prompt += f"{message['content']}" else: prompt = " ".join(message["content"] for message in messages) data = { "model": model, "prompt": prompt, "maximum_tokens": optional_params["maximum_tokens"] if "maximum_tokens" in optional_params else self.default_max_tokens_to_sample, # required input **optional_params, } ## LOGGING self.logging_obj.pre_call( input=prompt, api_key=self.api_key, additional_args={"complete_input_dict": data}, ) ## COMPLETION CALL response = requests.post( self.completion_url, headers=self.headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False ) if "stream" in optional_params and optional_params["stream"] == True: return response.iter_lines() else: ## LOGGING self.logging_obj.post_call( input=prompt, api_key=self.api_key, original_response=response.text, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response.text}") ## RESPONSE OBJECT completion_response = response.json() if "error" in completion_response: raise AlephAlphaError( message=completion_response["error"], status_code=response.status_code, ) else: try: model_response["choices"][0]["message"]["content"] = completion_response["completions"][0]["completion"] except: raise AlephAlphaError(message=json.dumps(completion_response), status_code=response.status_code) ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here. prompt_tokens = len( self.encoding.encode(prompt) ) completion_tokens = len( self.encoding.encode(model_response["choices"][0]["message"]["content"]) ) model_response["created"] = time.time() model_response["model"] = model model_response["usage"] = { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens, } return model_response def embedding( self, ): # logic for parsing in - calling - parsing out model embedding calls pass