import copy
import sys
import time
from datetime import datetime
from unittest import mock
from dotenv import load_dotenv
from litellm.types.utils import StandardCallbackDynamicParams
load_dotenv()
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system-path
import pytest
import litellm
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, headers
from litellm.litellm_core_utils.duration_parser import duration_in_seconds
from litellm.litellm_core_utils.duration_parser import (
get_last_day_of_month,
_extract_from_regex,
)
from litellm.utils import (
check_valid_key,
create_pretrained_tokenizer,
create_tokenizer,
function_to_dict,
get_llm_provider,
get_max_tokens,
get_supported_openai_params,
get_token_count,
get_valid_models,
token_counter,
trim_messages,
validate_environment,
)
from unittest.mock import AsyncMock, MagicMock, patch
# Assuming your trim_messages, shorten_message_to_fit_limit, and get_token_count functions are all in a module named 'message_utils'
# Test 1: Check trimming of normal message
def test_basic_trimming():
messages = [
{
"role": "user",
"content": "This is a long message that definitely exceeds the token limit.",
}
]
trimmed_messages = trim_messages(messages, model="claude-2", max_tokens=8)
print("trimmed messages")
print(trimmed_messages)
# print(get_token_count(messages=trimmed_messages, model="claude-2"))
assert (get_token_count(messages=trimmed_messages, model="claude-2")) <= 8
# test_basic_trimming()
def test_basic_trimming_no_max_tokens_specified():
messages = [
{
"role": "user",
"content": "This is a long message that is definitely under the token limit.",
}
]
trimmed_messages = trim_messages(messages, model="gpt-4")
print("trimmed messages for gpt-4")
print(trimmed_messages)
# print(get_token_count(messages=trimmed_messages, model="claude-2"))
assert (
get_token_count(messages=trimmed_messages, model="gpt-4")
) <= litellm.model_cost["gpt-4"]["max_tokens"]
# test_basic_trimming_no_max_tokens_specified()
def test_multiple_messages_trimming():
messages = [
{
"role": "user",
"content": "This is a long message that will exceed the token limit.",
},
{
"role": "user",
"content": "This is another long message that will also exceed the limit.",
},
]
trimmed_messages = trim_messages(
messages=messages, model="gpt-3.5-turbo", max_tokens=20
)
# print(get_token_count(messages=trimmed_messages, model="gpt-3.5-turbo"))
assert (get_token_count(messages=trimmed_messages, model="gpt-3.5-turbo")) <= 20
# test_multiple_messages_trimming()
def test_multiple_messages_no_trimming():
messages = [
{
"role": "user",
"content": "This is a long message that will exceed the token limit.",
},
{
"role": "user",
"content": "This is another long message that will also exceed the limit.",
},
]
trimmed_messages = trim_messages(
messages=messages, model="gpt-3.5-turbo", max_tokens=100
)
print("Trimmed messages")
print(trimmed_messages)
assert messages == trimmed_messages
# test_multiple_messages_no_trimming()
def test_large_trimming_multiple_messages():
messages = [
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
]
trimmed_messages = trim_messages(messages, max_tokens=20, model="gpt-4-0613")
print("trimmed messages")
print(trimmed_messages)
assert (get_token_count(messages=trimmed_messages, model="gpt-4-0613")) <= 20
# test_large_trimming()
def test_large_trimming_single_message():
messages = [
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."}
]
trimmed_messages = trim_messages(messages, max_tokens=5, model="gpt-4-0613")
assert (get_token_count(messages=trimmed_messages, model="gpt-4-0613")) <= 5
assert (get_token_count(messages=trimmed_messages, model="gpt-4-0613")) > 0
def test_trimming_with_system_message_within_max_tokens():
# This message is 33 tokens long
messages = [
{"role": "system", "content": "This is a short system message"},
{
"role": "user",
"content": "This is a medium normal message, let's say litellm is awesome.",
},
]
trimmed_messages = trim_messages(
messages, max_tokens=30, model="gpt-4-0613"
) # The system message should fit within the token limit
assert len(trimmed_messages) == 2
assert trimmed_messages[0]["content"] == "This is a short system message"
def test_trimming_with_system_message_exceeding_max_tokens():
# This message is 33 tokens long. The system message is 13 tokens long.
messages = [
{"role": "system", "content": "This is a short system message"},
{
"role": "user",
"content": "This is a medium normal message, let's say litellm is awesome.",
},
]
trimmed_messages = trim_messages(messages, max_tokens=12, model="gpt-4-0613")
assert len(trimmed_messages) == 1
def test_trimming_with_tool_calls():
from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message
messages = [
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris?",
},
Message(
content=None,
role="assistant",
tool_calls=[
ChatCompletionMessageToolCall(
function=Function(
arguments='{"location": "San Francisco, CA", "unit": "celsius"}',
name="get_current_weather",
),
id="call_G11shFcS024xEKjiAOSt6Tc9",
type="function",
),
ChatCompletionMessageToolCall(
function=Function(
arguments='{"location": "Tokyo, Japan", "unit": "celsius"}',
name="get_current_weather",
),
id="call_e0ss43Bg7H8Z9KGdMGWyZ9Mj",
type="function",
),
ChatCompletionMessageToolCall(
function=Function(
arguments='{"location": "Paris, France", "unit": "celsius"}',
name="get_current_weather",
),
id="call_nRjLXkWTJU2a4l9PZAf5as6g",
type="function",
),
],
function_call=None,
),
{
"tool_call_id": "call_G11shFcS024xEKjiAOSt6Tc9",
"role": "tool",
"name": "get_current_weather",
"content": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}',
},
{
"tool_call_id": "call_e0ss43Bg7H8Z9KGdMGWyZ9Mj",
"role": "tool",
"name": "get_current_weather",
"content": '{"location": "Tokyo", "temperature": "10", "unit": "celsius"}',
},
{
"tool_call_id": "call_nRjLXkWTJU2a4l9PZAf5as6g",
"role": "tool",
"name": "get_current_weather",
"content": '{"location": "Paris", "temperature": "22", "unit": "celsius"}',
},
]
result = trim_messages(messages=messages, max_tokens=1, return_response_tokens=True)
print(result)
assert len(result[0]) == 3 # final 3 messages are tool calls
def test_trimming_should_not_change_original_messages():
messages = [
{"role": "system", "content": "This is a short system message"},
{
"role": "user",
"content": "This is a medium normal message, let's say litellm is awesome.",
},
]
messages_copy = copy.deepcopy(messages)
trimmed_messages = trim_messages(messages, max_tokens=12, model="gpt-4-0613")
assert messages == messages_copy
@pytest.mark.parametrize("model", ["gpt-4-0125-preview", "claude-3-opus-20240229"])
def test_trimming_with_model_cost_max_input_tokens(model):
messages = [
{"role": "system", "content": "This is a normal system message"},
{
"role": "user",
"content": "This is a sentence" * 100000,
},
]
trimmed_messages = trim_messages(messages, model=model)
assert (
get_token_count(trimmed_messages, model=model)
< litellm.model_cost[model]["max_input_tokens"]
)
def test_aget_valid_models():
old_environ = os.environ
os.environ = {"OPENAI_API_KEY": "temp"} # mock set only openai key in environ
valid_models = get_valid_models()
print(valid_models)
# list of openai supported llms on litellm
expected_models = (
litellm.open_ai_chat_completion_models + litellm.open_ai_text_completion_models
)
assert valid_models == expected_models
# reset replicate env key
os.environ = old_environ
# GEMINI
expected_models = litellm.gemini_models
old_environ = os.environ
os.environ = {"GEMINI_API_KEY": "temp"} # mock set only openai key in environ
valid_models = get_valid_models()
print(valid_models)
assert valid_models == expected_models
# reset replicate env key
os.environ = old_environ
@pytest.mark.parametrize("custom_llm_provider", ["gemini", "anthropic", "xai"])
def test_get_valid_models_with_custom_llm_provider(custom_llm_provider):
from litellm.utils import ProviderConfigManager
from litellm.types.utils import LlmProviders
provider_config = ProviderConfigManager.get_provider_model_info(
model=None,
provider=LlmProviders(custom_llm_provider),
)
assert provider_config is not None
valid_models = get_valid_models(
check_provider_endpoint=True, custom_llm_provider=custom_llm_provider
)
print(valid_models)
assert len(valid_models) > 0
assert provider_config.get_models() == valid_models
# test_get_valid_models()
def test_bad_key():
key = "bad-key"
response = check_valid_key(model="gpt-3.5-turbo", api_key=key)
print(response, key)
assert response == False
def test_good_key():
key = os.environ["OPENAI_API_KEY"]
response = check_valid_key(model="gpt-3.5-turbo", api_key=key)
assert response == True
# test validate environment
def test_validate_environment_empty_model():
api_key = validate_environment()
if api_key is None:
raise Exception()
def test_validate_environment_api_key():
response_obj = validate_environment(model="gpt-3.5-turbo", api_key="sk-my-test-key")
assert (
response_obj["keys_in_environment"] is True
), f"Missing keys={response_obj['missing_keys']}"
def test_validate_environment_api_base_dynamic():
for provider in ["ollama", "ollama_chat"]:
kv = validate_environment(provider + "/mistral", api_base="https://example.com")
assert kv["keys_in_environment"]
assert kv["missing_keys"] == []
@mock.patch.dict(os.environ, {"OLLAMA_API_BASE": "foo"}, clear=True)
def test_validate_environment_ollama():
for provider in ["ollama", "ollama_chat"]:
kv = validate_environment(provider + "/mistral")
assert kv["keys_in_environment"]
assert kv["missing_keys"] == []
@mock.patch.dict(os.environ, {}, clear=True)
def test_validate_environment_ollama_failed():
for provider in ["ollama", "ollama_chat"]:
kv = validate_environment(provider + "/mistral")
assert not kv["keys_in_environment"]
assert kv["missing_keys"] == ["OLLAMA_API_BASE"]
def test_function_to_dict():
print("testing function to dict for get current weather")
def get_current_weather(location: str, unit: str):
"""Get the current weather in a given location
Parameters
----------
location : str
The city and state, e.g. San Francisco, CA
unit : {'celsius', 'fahrenheit'}
Temperature unit
Returns
-------
str
a sentence indicating the weather
"""
if location == "Boston, MA":
return "The weather is 12F"
function_json = litellm.utils.function_to_dict(get_current_weather)
print(function_json)
expected_output = {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"description": "Temperature unit",
"enum": "['fahrenheit', 'celsius']",
},
},
"required": ["location", "unit"],
},
}
print(expected_output)
assert function_json["name"] == expected_output["name"]
assert function_json["description"] == expected_output["description"]
assert function_json["parameters"]["type"] == expected_output["parameters"]["type"]
assert (
function_json["parameters"]["properties"]["location"]
== expected_output["parameters"]["properties"]["location"]
)
# the enum can change it can be - which is why we don't assert on unit
# {'type': 'string', 'description': 'Temperature unit', 'enum': "['fahrenheit', 'celsius']"}
# {'type': 'string', 'description': 'Temperature unit', 'enum': "['celsius', 'fahrenheit']"}
assert (
function_json["parameters"]["required"]
== expected_output["parameters"]["required"]
)
print("passed")
# test_function_to_dict()
def test_token_counter():
try:
messages = [{"role": "user", "content": "hi how are you what time is it"}]
tokens = token_counter(model="gpt-3.5-turbo", messages=messages)
print("gpt-35-turbo")
print(tokens)
assert tokens > 0
tokens = token_counter(model="claude-2", messages=messages)
print("claude-2")
print(tokens)
assert tokens > 0
tokens = token_counter(model="gemini/chat-bison", messages=messages)
print("gemini/chat-bison")
print(tokens)
assert tokens > 0
tokens = token_counter(model="ollama/llama2", messages=messages)
print("ollama/llama2")
print(tokens)
assert tokens > 0
tokens = token_counter(model="anthropic.claude-instant-v1", messages=messages)
print("anthropic.claude-instant-v1")
print(tokens)
assert tokens > 0
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_token_counter()
@pytest.mark.parametrize(
"model, expected_bool",
[
("gpt-3.5-turbo", True),
("azure/gpt-4-1106-preview", True),
("groq/gemma-7b-it", True),
("anthropic.claude-instant-v1", False),
("gemini/gemini-1.5-flash", True),
],
)
def test_supports_function_calling(model, expected_bool):
try:
assert litellm.supports_function_calling(model=model) == expected_bool
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.parametrize(
"model, expected_bool",
[
("gpt-4o-mini-search-preview", True),
("openai/gpt-4o-mini-search-preview", True),
("gpt-4o-search-preview", True),
("openai/gpt-4o-search-preview", True),
("groq/deepseek-r1-distill-llama-70b", False),
("groq/llama-3.3-70b-versatile", False),
("codestral/codestral-latest", False),
],
)
def test_supports_web_search(model, expected_bool):
try:
assert litellm.supports_web_search(model=model) == expected_bool
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.parametrize(
"model, expected_bool",
[
("openai/o3-mini", True),
("o3-mini", True),
("xai/grok-3-mini-beta", True),
("xai/grok-3-mini-fast-beta", True),
("xai/grok-2", False),
("gpt-3.5-turbo", False),
],
)
def test_supports_reasoning(model, expected_bool):
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
try:
assert litellm.supports_reasoning(model=model) == expected_bool
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_get_max_token_unit_test():
"""
More complete testing in `test_completion_cost.py`
"""
model = "bedrock/anthropic.claude-3-haiku-20240307-v1:0"
max_tokens = get_max_tokens(
model
) # Returns a number instead of throwing an Exception
assert isinstance(max_tokens, int)
def test_get_supported_openai_params() -> None:
# Mapped provider
assert isinstance(get_supported_openai_params("gpt-4"), list)
# Unmapped provider
assert get_supported_openai_params("nonexistent") is None
def test_get_chat_completion_prompt():
"""
Unit test to ensure get_chat_completion_prompt updates messages in logging object.
"""
from litellm.litellm_core_utils.litellm_logging import Logging
litellm_logging_obj = Logging(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "hi"}],
stream=False,
call_type="acompletion",
litellm_call_id="1234",
start_time=datetime.now(),
function_id="1234",
)
updated_message = "hello world"
litellm_logging_obj.get_chat_completion_prompt(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": updated_message}],
non_default_params={},
prompt_id="1234",
prompt_variables=None,
)
assert litellm_logging_obj.messages == [
{"role": "user", "content": updated_message}
]
def test_redact_msgs_from_logs():
"""
Tests that turn_off_message_logging does not modify the response_obj
On the proxy some users were seeing the redaction impact client side responses
"""
from litellm.litellm_core_utils.litellm_logging import Logging
from litellm.litellm_core_utils.redact_messages import (
redact_message_input_output_from_logging,
)
litellm.turn_off_message_logging = True
response_obj = litellm.ModelResponse(
choices=[
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "I'm LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner.",
"role": "assistant",
},
}
]
)
litellm_logging_obj = Logging(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "hi"}],
stream=False,
call_type="acompletion",
litellm_call_id="1234",
start_time=datetime.now(),
function_id="1234",
)
_redacted_response_obj = redact_message_input_output_from_logging(
result=response_obj,
model_call_details=litellm_logging_obj.model_call_details,
)
# Assert the response_obj content is NOT modified
assert (
response_obj.choices[0].message.content
== "I'm LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner."
)
litellm.turn_off_message_logging = False
print("Test passed")
def test_redact_msgs_from_logs_with_dynamic_params():
"""
Tests redaction behavior based on standard_callback_dynamic_params setting:
In all tests litellm.turn_off_message_logging is True
1. When standard_callback_dynamic_params.turn_off_message_logging is False (or not set): No redaction should occur. User has opted out of redaction.
2. When standard_callback_dynamic_params.turn_off_message_logging is True: Redaction should occur. User has opted in to redaction.
3. standard_callback_dynamic_params.turn_off_message_logging not set, litellm.turn_off_message_logging is True: Redaction should occur.
"""
from litellm.litellm_core_utils.litellm_logging import Logging
from litellm.litellm_core_utils.redact_messages import (
redact_message_input_output_from_logging,
)
litellm.turn_off_message_logging = True
test_content = "I'm LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner."
response_obj = litellm.ModelResponse(
choices=[
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": test_content,
"role": "assistant",
},
}
]
)
litellm_logging_obj = Logging(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "hi"}],
stream=False,
call_type="acompletion",
litellm_call_id="1234",
start_time=datetime.now(),
function_id="1234",
)
# Test Case 1: standard_callback_dynamic_params = False (or not set)
standard_callback_dynamic_params = StandardCallbackDynamicParams(
turn_off_message_logging=False
)
litellm_logging_obj.model_call_details["standard_callback_dynamic_params"] = (
standard_callback_dynamic_params
)
_redacted_response_obj = redact_message_input_output_from_logging(
result=response_obj,
model_call_details=litellm_logging_obj.model_call_details,
)
# Assert no redaction occurred
assert _redacted_response_obj.choices[0].message.content == test_content
# Test Case 2: standard_callback_dynamic_params = True
standard_callback_dynamic_params = StandardCallbackDynamicParams(
turn_off_message_logging=True
)
litellm_logging_obj.model_call_details["standard_callback_dynamic_params"] = (
standard_callback_dynamic_params
)
_redacted_response_obj = redact_message_input_output_from_logging(
result=response_obj,
model_call_details=litellm_logging_obj.model_call_details,
)
# Assert redaction occurred
assert _redacted_response_obj.choices[0].message.content == "redacted-by-litellm"
# Test Case 3: standard_callback_dynamic_params does not override litellm.turn_off_message_logging
# since litellm.turn_off_message_logging is True redaction should occur
standard_callback_dynamic_params = StandardCallbackDynamicParams()
litellm_logging_obj.model_call_details["standard_callback_dynamic_params"] = (
standard_callback_dynamic_params
)
_redacted_response_obj = redact_message_input_output_from_logging(
result=response_obj,
model_call_details=litellm_logging_obj.model_call_details,
)
# Assert no redaction occurred
assert _redacted_response_obj.choices[0].message.content == "redacted-by-litellm"
# Reset settings
litellm.turn_off_message_logging = False
print("Test passed")
@pytest.mark.parametrize(
"duration, unit",
[("7s", "s"), ("7m", "m"), ("7h", "h"), ("7d", "d"), ("7mo", "mo")],
)
def test_extract_from_regex(duration, unit):
value, _unit = _extract_from_regex(duration=duration)
assert value == 7
assert _unit == unit
def test_duration_in_seconds():
"""
Test if duration int is correctly calculated for different str
"""
import time
now = time.time()
current_time = datetime.fromtimestamp(now)
if current_time.month == 12:
target_year = current_time.year + 1
target_month = 1
else:
target_year = current_time.year
target_month = current_time.month + 1
# Determine the day to set for next month
target_day = current_time.day
last_day_of_target_month = get_last_day_of_month(target_year, target_month)
if target_day > last_day_of_target_month:
target_day = last_day_of_target_month
next_month = datetime(
year=target_year,
month=target_month,
day=target_day,
hour=current_time.hour,
minute=current_time.minute,
second=current_time.second,
microsecond=current_time.microsecond,
)
# Calculate the duration until the first day of the next month
duration_until_next_month = next_month - current_time
expected_duration = int(duration_until_next_month.total_seconds())
value = duration_in_seconds(duration="1mo")
assert value - expected_duration < 2
def test_duration_in_seconds_basic():
assert duration_in_seconds(duration="3s") == 3
assert duration_in_seconds(duration="3m") == 180
assert duration_in_seconds(duration="3h") == 10800
assert duration_in_seconds(duration="3d") == 259200
assert duration_in_seconds(duration="3w") == 1814400
def test_get_llm_provider_ft_models():
"""
All ft prefixed models should map to OpenAI
gpt-3.5-turbo-0125 (recommended),
gpt-3.5-turbo-1106,
gpt-3.5-turbo,
gpt-4-0613 (experimental)
gpt-4o-2024-05-13.
babbage-002, davinci-002,
"""
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-3.5-turbo-0125")
assert custom_llm_provider == "openai"
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-3.5-turbo-1106")
assert custom_llm_provider == "openai"
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-3.5-turbo")
assert custom_llm_provider == "openai"
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-4-0613")
assert custom_llm_provider == "openai"
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-3.5-turbo")
assert custom_llm_provider == "openai"
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-4o-2024-05-13")
assert custom_llm_provider == "openai"
@pytest.mark.parametrize("langfuse_trace_id", [None, "my-unique-trace-id"])
@pytest.mark.parametrize(
"langfuse_existing_trace_id", [None, "my-unique-existing-trace-id"]
)
def test_logging_trace_id(langfuse_trace_id, langfuse_existing_trace_id):
"""
- Unit test for `_get_trace_id` function in Logging obj
"""
from litellm.litellm_core_utils.litellm_logging import Logging
litellm.success_callback = ["langfuse"]
litellm_call_id = "my-unique-call-id"
litellm_logging_obj = Logging(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "hi"}],
stream=False,
call_type="acompletion",
litellm_call_id=litellm_call_id,
start_time=datetime.now(),
function_id="1234",
)
metadata = {}
if langfuse_trace_id is not None:
metadata["trace_id"] = langfuse_trace_id
if langfuse_existing_trace_id is not None:
metadata["existing_trace_id"] = langfuse_existing_trace_id
litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey how's it going?"}],
mock_response="Hey!",
litellm_logging_obj=litellm_logging_obj,
metadata=metadata,
)
time.sleep(3)
assert litellm_logging_obj._get_trace_id(service_name="langfuse") is not None
## if existing_trace_id exists
if langfuse_existing_trace_id is not None:
assert (
litellm_logging_obj._get_trace_id(service_name="langfuse")
== langfuse_existing_trace_id
)
## if trace_id exists
elif langfuse_trace_id is not None:
assert (
litellm_logging_obj._get_trace_id(service_name="langfuse")
== langfuse_trace_id
)
## if existing_trace_id exists
else:
assert (
litellm_logging_obj._get_trace_id(service_name="langfuse")
== litellm_call_id
)
def test_convert_model_response_object():
"""
Unit test to ensure model response object correctly handles openrouter errors.
"""
args = {
"response_object": {
"id": None,
"choices": None,
"created": None,
"model": None,
"object": None,
"service_tier": None,
"system_fingerprint": None,
"usage": None,
"error": {
"message": '{"type":"error","error":{"type":"invalid_request_error","message":"Output blocked by content filtering policy"}}',
"code": 400,
},
},
"model_response_object": litellm.ModelResponse(
id="chatcmpl-b88ce43a-7bfc-437c-b8cc-e90d59372cfb",
choices=[
litellm.Choices(
finish_reason="stop",
index=0,
message=litellm.Message(content="default", role="assistant"),
)
],
created=1719376241,
model="openrouter/anthropic/claude-3.5-sonnet",
object="chat.completion",
system_fingerprint=None,
usage=litellm.Usage(),
),
"response_type": "completion",
"stream": False,
"start_time": None,
"end_time": None,
"hidden_params": None,
}
try:
litellm.convert_to_model_response_object(**args)
pytest.fail("Expected this to fail")
except Exception as e:
assert hasattr(e, "status_code")
assert e.status_code == 400
assert hasattr(e, "message")
assert (
e.message
== '{"type":"error","error":{"type":"invalid_request_error","message":"Output blocked by content filtering policy"}}'
)
@pytest.mark.parametrize(
"content, expected_reasoning, expected_content",
[
(None, None, None),
(
"I am thinking hereThe sky is a canvas of blue",
"I am thinking here",
"The sky is a canvas of blue",
),
("I am a regular response", None, "I am a regular response"),
],
)
def test_parse_content_for_reasoning(content, expected_reasoning, expected_content):
assert litellm.utils._parse_content_for_reasoning(content) == (
expected_reasoning,
expected_content,
)
@pytest.mark.parametrize(
"model, expected_bool",
[
("vertex_ai/gemini-1.5-pro", True),
("gemini/gemini-1.5-pro", True),
("predibase/llama3-8b-instruct", True),
("gpt-3.5-turbo", False),
("groq/llama3-70b-8192", True),
],
)
def test_supports_response_schema(model, expected_bool):
"""
Unit tests for 'supports_response_schema' helper function.
Should be true for gemini-1.5-pro on google ai studio / vertex ai AND predibase models
Should be false otherwise
"""
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
from litellm.utils import supports_response_schema
response = supports_response_schema(model=model, custom_llm_provider=None)
assert expected_bool == response
@pytest.mark.parametrize(
"model, expected_bool",
[
("gpt-3.5-turbo", True),
("gpt-4", True),
("command-nightly", False),
("gemini-pro", True),
],
)
def test_supports_function_calling_v2(model, expected_bool):
"""
Unit test for 'supports_function_calling' helper function.
"""
from litellm.utils import supports_function_calling
response = supports_function_calling(model=model, custom_llm_provider=None)
assert expected_bool == response
@pytest.mark.parametrize(
"model, expected_bool",
[
("gpt-4-vision-preview", True),
("gpt-3.5-turbo", False),
("claude-3-opus-20240229", True),
("gemini-pro-vision", True),
("command-nightly", False),
],
)
def test_supports_vision(model, expected_bool):
"""
Unit test for 'supports_vision' helper function.
"""
from litellm.utils import supports_vision
response = supports_vision(model=model, custom_llm_provider=None)
assert expected_bool == response
def test_usage_object_null_tokens():
"""
Unit test.
Asserts Usage obj always returns int.
Fixes https://github.com/BerriAI/litellm/issues/5096
"""
usage_obj = litellm.Usage(prompt_tokens=2, completion_tokens=None, total_tokens=2)
assert usage_obj.completion_tokens == 0
def test_is_base64_encoded():
import base64
import requests
litellm.set_verbose = True
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
from litellm.utils import is_base64_encoded
assert is_base64_encoded(s=base64_image) is True
@mock.patch("httpx.AsyncClient")
@mock.patch.dict(
os.environ,
{"SSL_VERIFY": "/certificate.pem", "SSL_CERTIFICATE": "/client.pem"},
clear=True,
)
def test_async_http_handler(mock_async_client):
import httpx
timeout = 120
event_hooks = {"request": [lambda r: r]}
concurrent_limit = 2
AsyncHTTPHandler(timeout, event_hooks, concurrent_limit)
mock_async_client.assert_called_with(
cert="/client.pem",
transport=None,
event_hooks=event_hooks,
headers=headers,
limits=httpx.Limits(
max_connections=concurrent_limit,
max_keepalive_connections=concurrent_limit,
),
timeout=timeout,
verify="/certificate.pem",
)
@mock.patch("httpx.AsyncClient")
@mock.patch.dict(os.environ, {}, clear=True)
def test_async_http_handler_force_ipv4(mock_async_client):
"""
Test AsyncHTTPHandler when litellm.force_ipv4 is True
This is prod test - we need to ensure that httpx always uses ipv4 when litellm.force_ipv4 is True
"""
import httpx
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
# Set force_ipv4 to True
litellm.force_ipv4 = True
try:
timeout = 120
event_hooks = {"request": [lambda r: r]}
concurrent_limit = 2
AsyncHTTPHandler(timeout, event_hooks, concurrent_limit)
# Get the call arguments
call_args = mock_async_client.call_args[1]
############# IMPORTANT ASSERTION #################
# Assert transport exists and is configured correctly for using ipv4
assert isinstance(call_args["transport"], httpx.AsyncHTTPTransport)
print(call_args["transport"])
assert call_args["transport"]._pool._local_address == "0.0.0.0"
####################################
# Assert other parameters match
assert call_args["event_hooks"] == event_hooks
assert call_args["headers"] == headers
assert isinstance(call_args["limits"], httpx.Limits)
assert call_args["limits"].max_connections == concurrent_limit
assert call_args["limits"].max_keepalive_connections == concurrent_limit
assert call_args["timeout"] == timeout
assert call_args["verify"] is True
assert call_args["cert"] is None
finally:
# Reset force_ipv4 to default
litellm.force_ipv4 = False
@pytest.mark.parametrize(
"model, expected_bool", [("gpt-3.5-turbo", False), ("gpt-4o-audio-preview", True)]
)
def test_supports_audio_input(model, expected_bool):
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
from litellm.utils import supports_audio_input, supports_audio_output
supports_pc = supports_audio_input(model=model)
assert supports_pc == expected_bool
def test_is_base64_encoded_2():
from litellm.utils import is_base64_encoded
assert (
is_base64_encoded(
s=""
)
is True
)
assert is_base64_encoded(s="Dog") is False
@pytest.mark.parametrize(
"messages, expected_bool",
[
([{"role": "user", "content": "hi"}], True),
([{"role": "user", "content": [{"type": "text", "text": "hi"}]}], True),
(
[
{
"role": "user",
"content": [
{
"type": "file",
"file": {
"file_id": "123",
"file_name": "test.txt",
"file_size": 100,
"file_type": "text/plain",
"file_url": "https://example.com/test.txt",
},
}
],
}
],
True,
),
(
[
{
"role": "user",
"content": [
{"type": "image_url", "url": "https://example.com/image.png"}
],
}
],
True,
),
(
[
{
"role": "user",
"content": [
{"type": "text", "text": "hi"},
{
"type": "image",
"source": {
"type": "image",
"source": {
"type": "base64",
"media_type": "image/png",
"data": "1234",
},
},
},
],
}
],
False,
),
],
)
def test_validate_chat_completion_user_messages(messages, expected_bool):
from litellm.utils import validate_chat_completion_user_messages
if expected_bool:
## Valid message
validate_chat_completion_user_messages(messages=messages)
else:
## Invalid message
with pytest.raises(Exception):
validate_chat_completion_user_messages(messages=messages)
@pytest.mark.parametrize(
"tool_choice, expected_bool",
[
({"type": "function", "function": {"name": "get_current_weather"}}, True),
({"type": "tool", "name": "get_current_weather"}, False),
(None, True),
("auto", True),
("required", True),
],
)
def test_validate_chat_completion_tool_choice(tool_choice, expected_bool):
from litellm.utils import validate_chat_completion_tool_choice
if expected_bool:
validate_chat_completion_tool_choice(tool_choice=tool_choice)
else:
with pytest.raises(Exception):
validate_chat_completion_tool_choice(tool_choice=tool_choice)
def test_models_by_provider():
"""
Make sure all providers from model map are in the valid providers list
"""
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
from litellm import models_by_provider
providers = set()
for k, v in litellm.model_cost.items():
if "_" in v["litellm_provider"] and "-" in v["litellm_provider"]:
continue
elif k == "sample_spec":
continue
elif (
v["litellm_provider"] == "sagemaker"
or v["litellm_provider"] == "bedrock_converse"
):
continue
else:
providers.add(v["litellm_provider"])
for provider in providers:
assert provider in models_by_provider.keys()
@pytest.mark.parametrize(
"litellm_params, disable_end_user_cost_tracking, expected_end_user_id",
[
({}, False, None),
({"user_api_key_end_user_id": "123"}, False, "123"),
({"user_api_key_end_user_id": "123"}, True, None),
],
)
def test_get_end_user_id_for_cost_tracking(
litellm_params, disable_end_user_cost_tracking, expected_end_user_id
):
from litellm.utils import get_end_user_id_for_cost_tracking
litellm.disable_end_user_cost_tracking = disable_end_user_cost_tracking
assert (
get_end_user_id_for_cost_tracking(litellm_params=litellm_params)
== expected_end_user_id
)
@pytest.mark.parametrize(
"litellm_params, disable_end_user_cost_tracking_prometheus_only, expected_end_user_id",
[
({}, False, None),
({"user_api_key_end_user_id": "123"}, False, "123"),
({"user_api_key_end_user_id": "123"}, True, None),
],
)
def test_get_end_user_id_for_cost_tracking_prometheus_only(
litellm_params, disable_end_user_cost_tracking_prometheus_only, expected_end_user_id
):
from litellm.utils import get_end_user_id_for_cost_tracking
litellm.disable_end_user_cost_tracking_prometheus_only = (
disable_end_user_cost_tracking_prometheus_only
)
assert (
get_end_user_id_for_cost_tracking(
litellm_params=litellm_params, service_type="prometheus"
)
== expected_end_user_id
)
def test_is_prompt_caching_enabled_error_handling():
"""
Assert that `is_prompt_caching_valid_prompt` safely handles errors in `token_counter`.
"""
with patch(
"litellm.utils.token_counter",
side_effect=Exception(
"Mocked error, This should not raise an error. Instead is_prompt_caching_valid_prompt should return False."
),
):
result = litellm.utils.is_prompt_caching_valid_prompt(
messages=[{"role": "user", "content": "test"}],
tools=None,
custom_llm_provider="anthropic",
model="anthropic/claude-3-5-sonnet-20240620",
)
assert result is False # Should return False when an error occurs
def test_is_prompt_caching_enabled_return_default_image_dimensions():
"""
Assert that `is_prompt_caching_valid_prompt` calls token_counter with use_default_image_token_count=True
when processing messages containing images
IMPORTANT: Ensures Get token counter does not make a GET request to the image url
"""
with patch("litellm.utils.token_counter") as mock_token_counter:
litellm.utils.is_prompt_caching_valid_prompt(
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://www.gstatic.com/webp/gallery/1.webp",
"detail": "high",
},
},
],
}
],
tools=None,
custom_llm_provider="openai",
model="gpt-4o-mini",
)
# Assert token_counter was called with use_default_image_token_count=True
args_to_mock_token_counter = mock_token_counter.call_args[1]
print("args_to_mock", args_to_mock_token_counter)
assert args_to_mock_token_counter["use_default_image_token_count"] is True
def test_token_counter_with_image_url_with_detail_high():
"""
Assert that token_counter does not make a GET request to the image url when `use_default_image_token_count=True`
PROD TEST this is importat - Can impact latency very badly
"""
from litellm.constants import DEFAULT_IMAGE_TOKEN_COUNT
from litellm._logging import verbose_logger
import logging
verbose_logger.setLevel(logging.DEBUG)
_tokens = litellm.utils.token_counter(
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://www.gstatic.com/webp/gallery/1.webp",
"detail": "high",
},
},
],
}
],
model="gpt-4o-mini",
use_default_image_token_count=True,
)
print("tokens", _tokens)
assert _tokens == DEFAULT_IMAGE_TOKEN_COUNT + 7
def test_fireworks_ai_document_inlining():
"""
With document inlining, all fireworks ai models are now:
- supports_pdf
- supports_vision
"""
from litellm.utils import supports_pdf_input, supports_vision
litellm._turn_on_debug()
assert supports_pdf_input("fireworks_ai/llama-3.1-8b-instruct") is True
assert supports_vision("fireworks_ai/llama-3.1-8b-instruct") is True
def test_logprobs_type():
from litellm.types.utils import Logprobs
logprobs = {
"text_offset": None,
"token_logprobs": None,
"tokens": None,
"top_logprobs": None,
}
logprobs = Logprobs(**logprobs)
assert logprobs.text_offset is None
assert logprobs.token_logprobs is None
assert logprobs.tokens is None
assert logprobs.top_logprobs is None
def test_get_valid_models_openai_proxy(monkeypatch):
from litellm.utils import get_valid_models
import litellm
litellm._turn_on_debug()
monkeypatch.setenv("LITELLM_PROXY_API_KEY", "sk-1234")
monkeypatch.setenv("LITELLM_PROXY_API_BASE", "https://litellm-api.up.railway.app/")
monkeypatch.delenv("FIREWORKS_AI_ACCOUNT_ID", None)
monkeypatch.delenv("FIREWORKS_AI_API_KEY", None)
mock_response_data = {
"object": "list",
"data": [
{
"id": "gpt-4o",
"object": "model",
"created": 1686935002,
"owned_by": "organization-owner",
},
],
}
# Create a mock response object
mock_response = MagicMock()
mock_response.status_code = 200
mock_response.json.return_value = mock_response_data
with patch.object(
litellm.module_level_client, "get", return_value=mock_response
) as mock_post:
valid_models = get_valid_models(check_provider_endpoint=True)
assert "litellm_proxy/gpt-4o" in valid_models
def test_get_valid_models_fireworks_ai(monkeypatch):
from litellm.utils import get_valid_models
import litellm
litellm._turn_on_debug()
monkeypatch.setenv("FIREWORKS_API_KEY", "sk-1234")
monkeypatch.setenv("FIREWORKS_ACCOUNT_ID", "1234")
monkeypatch.setattr(litellm, "provider_list", ["fireworks_ai"])
mock_response_data = {
"models": [
{
"name": "accounts/fireworks/models/llama-3.1-8b-instruct",
"displayName": "",
"description": "",
"createTime": "2023-11-07T05:31:56Z",
"createdBy": "",
"state": "STATE_UNSPECIFIED",
"status": {"code": "OK", "message": ""},
"kind": "KIND_UNSPECIFIED",
"githubUrl": "",
"huggingFaceUrl": "",
"baseModelDetails": {
"worldSize": 123,
"checkpointFormat": "CHECKPOINT_FORMAT_UNSPECIFIED",
"parameterCount": "",
"moe": True,
"tunable": True,
},
"peftDetails": {
"baseModel": "",
"r": 123,
"targetModules": [""],
},
"teftDetails": {},
"public": True,
"conversationConfig": {
"style": "",
"system": "",
"template": "",
},
"contextLength": 123,
"supportsImageInput": True,
"supportsTools": True,
"importedFrom": "",
"fineTuningJob": "",
"defaultDraftModel": "",
"defaultDraftTokenCount": 123,
"precisions": ["PRECISION_UNSPECIFIED"],
"deployedModelRefs": [
{
"name": "",
"deployment": "",
"state": "STATE_UNSPECIFIED",
"default": True,
"public": True,
}
],
"cluster": "",
"deprecationDate": {"year": 123, "month": 123, "day": 123},
}
],
"nextPageToken": "",
"totalSize": 123,
}
# Create a mock response object
mock_response = MagicMock()
mock_response.status_code = 200
mock_response.json.return_value = mock_response_data
with patch.object(
litellm.module_level_client, "get", return_value=mock_response
) as mock_post:
valid_models = get_valid_models(check_provider_endpoint=True)
mock_post.assert_called_once()
assert (
"fireworks_ai/accounts/fireworks/models/llama-3.1-8b-instruct"
in valid_models
)
def test_get_valid_models_default(monkeypatch):
"""
Ensure that the default models is used when error retrieving from model api.
Prevent regression for existing usage.
"""
from litellm.utils import get_valid_models
import litellm
monkeypatch.setenv("FIREWORKS_API_KEY", "sk-1234")
valid_models = get_valid_models()
assert len(valid_models) > 0
def test_supports_vision_gemini():
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
from litellm.utils import supports_vision
assert supports_vision("gemini-1.5-pro") is True
def test_pick_cheapest_chat_model_from_llm_provider():
from litellm.litellm_core_utils.llm_request_utils import (
pick_cheapest_chat_models_from_llm_provider,
)
assert len(pick_cheapest_chat_models_from_llm_provider("openai", n=3)) == 3
assert len(pick_cheapest_chat_models_from_llm_provider("unknown", n=1)) == 0
def test_get_potential_model_names():
from litellm.utils import _get_potential_model_names
assert _get_potential_model_names(
model="bedrock/ap-northeast-1/anthropic.claude-instant-v1",
custom_llm_provider="bedrock",
)
@pytest.mark.parametrize("num_retries", [0, 1, 5])
def test_get_num_retries(num_retries):
from litellm.utils import _get_wrapper_num_retries
assert _get_wrapper_num_retries(
kwargs={"num_retries": num_retries}, exception=Exception("test")
) == (
num_retries,
{
"num_retries": num_retries,
},
)
def test_add_custom_logger_callback_to_specific_event(monkeypatch):
from litellm.utils import _add_custom_logger_callback_to_specific_event
monkeypatch.setattr(litellm, "success_callback", [])
monkeypatch.setattr(litellm, "failure_callback", [])
_add_custom_logger_callback_to_specific_event("langfuse", "success")
assert len(litellm.success_callback) == 1
assert len(litellm.failure_callback) == 0
def test_add_custom_logger_callback_to_specific_event_e2e(monkeypatch):
monkeypatch.setattr(litellm, "success_callback", [])
monkeypatch.setattr(litellm, "failure_callback", [])
monkeypatch.setattr(litellm, "callbacks", [])
litellm.success_callback = ["humanloop"]
curr_len_success_callback = len(litellm.success_callback)
curr_len_failure_callback = len(litellm.failure_callback)
litellm.completion(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "Hello, world!"}],
mock_response="Testing langfuse",
)
assert len(litellm.success_callback) == curr_len_success_callback
assert len(litellm.failure_callback) == curr_len_failure_callback
def test_custom_logger_exists_in_callbacks_individual_functions(monkeypatch):
"""
Test _custom_logger_class_exists_in_success_callbacks and _custom_logger_class_exists_in_failure_callbacks helper functions
Tests if logger is found in different callback lists
"""
from litellm.integrations.custom_logger import CustomLogger
from litellm.utils import (
_custom_logger_class_exists_in_failure_callbacks,
_custom_logger_class_exists_in_success_callbacks,
)
# Create a mock CustomLogger class
class MockCustomLogger(CustomLogger):
def log_success_event(self, kwargs, response_obj, start_time, end_time):
pass
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
pass
# Reset all callback lists
for list_name in [
"callbacks",
"_async_success_callback",
"_async_failure_callback",
"success_callback",
"failure_callback",
]:
monkeypatch.setattr(litellm, list_name, [])
mock_logger = MockCustomLogger()
# Test 1: No logger exists in any callback list
assert _custom_logger_class_exists_in_success_callbacks(mock_logger) == False
assert _custom_logger_class_exists_in_failure_callbacks(mock_logger) == False
# Test 2: Logger exists in success_callback
litellm.success_callback.append(mock_logger)
assert _custom_logger_class_exists_in_success_callbacks(mock_logger) == True
assert _custom_logger_class_exists_in_failure_callbacks(mock_logger) == False
# Reset callbacks
litellm.success_callback = []
# Test 3: Logger exists in _async_success_callback
litellm._async_success_callback.append(mock_logger)
assert _custom_logger_class_exists_in_success_callbacks(mock_logger) == True
assert _custom_logger_class_exists_in_failure_callbacks(mock_logger) == False
# Reset callbacks
litellm._async_success_callback = []
# Test 4: Logger exists in failure_callback
litellm.failure_callback.append(mock_logger)
assert _custom_logger_class_exists_in_success_callbacks(mock_logger) == False
assert _custom_logger_class_exists_in_failure_callbacks(mock_logger) == True
# Reset callbacks
litellm.failure_callback = []
# Test 5: Logger exists in _async_failure_callback
litellm._async_failure_callback.append(mock_logger)
assert _custom_logger_class_exists_in_success_callbacks(mock_logger) == False
assert _custom_logger_class_exists_in_failure_callbacks(mock_logger) == True
# Test 6: Logger exists in both success and failure callbacks
litellm.success_callback.append(mock_logger)
litellm.failure_callback.append(mock_logger)
assert _custom_logger_class_exists_in_success_callbacks(mock_logger) == True
assert _custom_logger_class_exists_in_failure_callbacks(mock_logger) == True
# Test 7: Different instance of same logger class
mock_logger_2 = MockCustomLogger()
assert _custom_logger_class_exists_in_success_callbacks(mock_logger_2) == True
assert _custom_logger_class_exists_in_failure_callbacks(mock_logger_2) == True
@pytest.mark.asyncio
async def test_add_custom_logger_callback_to_specific_event_with_duplicates(
monkeypatch,
):
"""
Test that when a callback exists in both success_callback and _async_success_callback,
it's not added again
"""
from litellm.integrations.langfuse.langfuse_prompt_management import (
LangfusePromptManagement,
)
# Reset all callback lists
monkeypatch.setattr(litellm, "callbacks", [])
monkeypatch.setattr(litellm, "_async_success_callback", [])
monkeypatch.setattr(litellm, "_async_failure_callback", [])
monkeypatch.setattr(litellm, "success_callback", [])
monkeypatch.setattr(litellm, "failure_callback", [])
# Add logger to both success_callback and _async_success_callback
langfuse_logger = LangfusePromptManagement()
litellm.success_callback.append(langfuse_logger)
litellm._async_success_callback.append(langfuse_logger)
# Get initial lengths
initial_success_callback_len = len(litellm.success_callback)
initial_async_success_callback_len = len(litellm._async_success_callback)
# Make a completion call
await litellm.acompletion(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "Hello, world!"}],
mock_response="Testing duplicate callbacks",
)
# Assert no new callbacks were added
assert len(litellm.success_callback) == initial_success_callback_len
assert len(litellm._async_success_callback) == initial_async_success_callback_len
@pytest.mark.asyncio
async def test_add_custom_logger_callback_to_specific_event_with_duplicates_success_callback(
monkeypatch,
):
"""
Test that when a callback exists in both success_callback and _async_success_callback,
it's not added again
"""
from litellm.integrations.langfuse.langfuse_prompt_management import (
LangfusePromptManagement,
)
# Reset all callback lists
monkeypatch.setattr(litellm, "callbacks", [])
monkeypatch.setattr(litellm, "_async_success_callback", [])
monkeypatch.setattr(litellm, "_async_failure_callback", [])
monkeypatch.setattr(litellm, "success_callback", [])
monkeypatch.setattr(litellm, "failure_callback", [])
# Add logger to both success_callback and _async_success_callback
langfuse_logger = LangfusePromptManagement()
litellm.success_callback.append(langfuse_logger)
# Get initial lengths
initial_success_callback_len = len(litellm.success_callback)
initial_async_success_callback_len = len(litellm._async_success_callback)
# Make a completion call
await litellm.acompletion(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "Hello, world!"}],
mock_response="Testing duplicate callbacks",
)
# Assert no new callbacks were added
assert len(litellm.success_callback) == initial_success_callback_len
assert len(litellm._async_success_callback) == initial_async_success_callback_len
@pytest.mark.asyncio
async def test_add_custom_logger_callback_to_specific_event_with_duplicates_callbacks(
monkeypatch,
):
"""
Test that when a callback exists in both success_callback and _async_success_callback,
it's not added again
"""
from litellm.integrations.langfuse.langfuse_prompt_management import (
LangfusePromptManagement,
)
# Reset all callback lists
monkeypatch.setattr(litellm, "callbacks", [])
monkeypatch.setattr(litellm, "_async_success_callback", [])
monkeypatch.setattr(litellm, "_async_failure_callback", [])
monkeypatch.setattr(litellm, "success_callback", [])
monkeypatch.setattr(litellm, "failure_callback", [])
# Add logger to both success_callback and _async_success_callback
langfuse_logger = LangfusePromptManagement()
litellm.callbacks.append(langfuse_logger)
# Make a completion call
await litellm.acompletion(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "Hello, world!"}],
mock_response="Testing duplicate callbacks",
)
# Assert no new callbacks were added
initial_callbacks_len = len(litellm.callbacks)
initial_async_success_callback_len = len(litellm._async_success_callback)
initial_success_callback_len = len(litellm.success_callback)
print(
f"Num callbacks before: litellm.callbacks: {len(litellm.callbacks)}, litellm._async_success_callback: {len(litellm._async_success_callback)}, litellm.success_callback: {len(litellm.success_callback)}"
)
for _ in range(10):
await litellm.acompletion(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "Hello, world!"}],
mock_response="Testing duplicate callbacks",
)
assert len(litellm.callbacks) == initial_callbacks_len
assert len(litellm._async_success_callback) == initial_async_success_callback_len
assert len(litellm.success_callback) == initial_success_callback_len
print(
f"Num callbacks after 10 mock calls: litellm.callbacks: {len(litellm.callbacks)}, litellm._async_success_callback: {len(litellm._async_success_callback)}, litellm.success_callback: {len(litellm.success_callback)}"
)
def test_add_custom_logger_callback_to_specific_event_e2e_failure(monkeypatch):
from litellm.integrations.openmeter import OpenMeterLogger
monkeypatch.setattr(litellm, "success_callback", [])
monkeypatch.setattr(litellm, "failure_callback", [])
monkeypatch.setattr(litellm, "callbacks", [])
monkeypatch.setenv("OPENMETER_API_KEY", "wedlwe")
monkeypatch.setenv("OPENMETER_API_URL", "https://openmeter.dev")
litellm.failure_callback = ["openmeter"]
curr_len_success_callback = len(litellm.success_callback)
curr_len_failure_callback = len(litellm.failure_callback)
litellm.completion(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "Hello, world!"}],
mock_response="Testing langfuse",
)
assert len(litellm.success_callback) == curr_len_success_callback
assert len(litellm.failure_callback) == curr_len_failure_callback
assert any(
isinstance(callback, OpenMeterLogger) for callback in litellm.failure_callback
)
@pytest.mark.asyncio
async def test_wrapper_kwargs_passthrough():
from litellm.utils import client
from litellm.litellm_core_utils.litellm_logging import (
Logging as LiteLLMLoggingObject,
)
# Create mock original function
mock_original = AsyncMock()
# Apply decorator
@client
async def test_function(**kwargs):
return await mock_original(**kwargs)
# Test kwargs
test_kwargs = {"base_model": "gpt-4o-mini"}
# Call decorated function
await test_function(**test_kwargs)
mock_original.assert_called_once()
# get litellm logging object
litellm_logging_obj: LiteLLMLoggingObject = mock_original.call_args.kwargs.get(
"litellm_logging_obj"
)
assert litellm_logging_obj is not None
print(
f"litellm_logging_obj.model_call_details: {litellm_logging_obj.model_call_details}"
)
# get base model
assert (
litellm_logging_obj.model_call_details["litellm_params"]["base_model"]
== "gpt-4o-mini"
)
def test_dict_to_response_format_helper():
from litellm.llms.base_llm.base_utils import _dict_to_response_format_helper
args = {
"response_format": {
"type": "json_schema",
"json_schema": {
"schema": {
"$defs": {
"CalendarEvent": {
"properties": {
"name": {"title": "Name", "type": "string"},
"date": {"title": "Date", "type": "string"},
"participants": {
"items": {"type": "string"},
"title": "Participants",
"type": "array",
},
},
"required": ["name", "date", "participants"],
"title": "CalendarEvent",
"type": "object",
"additionalProperties": False,
}
},
"properties": {
"events": {
"items": {"$ref": "#/$defs/CalendarEvent"},
"title": "Events",
"type": "array",
}
},
"required": ["events"],
"title": "EventsList",
"type": "object",
"additionalProperties": False,
},
"name": "EventsList",
"strict": True,
},
},
"ref_template": "/$defs/{model}",
}
_dict_to_response_format_helper(**args)
def test_validate_user_messages_invalid_content_type():
from litellm.utils import validate_chat_completion_user_messages
messages = [{"content": [{"type": "invalid_type", "text": "Hello"}]}]
with pytest.raises(Exception) as e:
validate_chat_completion_user_messages(messages)
assert "Invalid message" in str(e)
print(e)
from litellm.integrations.custom_guardrail import CustomGuardrail
from litellm.utils import get_applied_guardrails
from unittest.mock import Mock
@pytest.mark.parametrize(
"test_case",
[
{
"name": "default_on_guardrail",
"callbacks": [
CustomGuardrail(guardrail_name="test_guardrail", default_on=True)
],
"kwargs": {"metadata": {"requester_metadata": {"guardrails": []}}},
"expected": ["test_guardrail"],
},
{
"name": "request_specific_guardrail",
"callbacks": [
CustomGuardrail(guardrail_name="test_guardrail", default_on=False)
],
"kwargs": {
"metadata": {"requester_metadata": {"guardrails": ["test_guardrail"]}}
},
"expected": ["test_guardrail"],
},
{
"name": "multiple_guardrails",
"callbacks": [
CustomGuardrail(guardrail_name="default_guardrail", default_on=True),
CustomGuardrail(guardrail_name="request_guardrail", default_on=False),
],
"kwargs": {
"metadata": {
"requester_metadata": {"guardrails": ["request_guardrail"]}
}
},
"expected": ["default_guardrail", "request_guardrail"],
},
{
"name": "empty_metadata",
"callbacks": [
CustomGuardrail(guardrail_name="test_guardrail", default_on=False)
],
"kwargs": {},
"expected": [],
},
{
"name": "none_callback",
"callbacks": [
None,
CustomGuardrail(guardrail_name="test_guardrail", default_on=True),
],
"kwargs": {},
"expected": ["test_guardrail"],
},
{
"name": "non_guardrail_callback",
"callbacks": [
Mock(),
CustomGuardrail(guardrail_name="test_guardrail", default_on=True),
],
"kwargs": {},
"expected": ["test_guardrail"],
},
],
)
def test_get_applied_guardrails(test_case):
# Setup
litellm.callbacks = test_case["callbacks"]
# Execute
result = get_applied_guardrails(test_case["kwargs"])
# Assert
assert sorted(result) == sorted(test_case["expected"])
@pytest.mark.parametrize(
"endpoint, params, expected_bool",
[
("localhost:4000/v1/rerank", ["max_chunks_per_doc"], True),
("localhost:4000/v2/rerank", ["max_chunks_per_doc"], False),
("localhost:4000", ["max_chunks_per_doc"], True),
("localhost:4000/v1/rerank", ["max_tokens_per_doc"], True),
("localhost:4000/v2/rerank", ["max_tokens_per_doc"], False),
("localhost:4000", ["max_tokens_per_doc"], False),
(
"localhost:4000/v1/rerank",
["max_chunks_per_doc", "max_tokens_per_doc"],
True,
),
(
"localhost:4000/v2/rerank",
["max_chunks_per_doc", "max_tokens_per_doc"],
False,
),
("localhost:4000", ["max_chunks_per_doc", "max_tokens_per_doc"], False),
],
)
def test_should_use_cohere_v1_client(endpoint, params, expected_bool):
assert litellm.utils.should_use_cohere_v1_client(endpoint, params) == expected_bool
def test_add_openai_metadata():
from litellm.utils import add_openai_metadata
metadata = {
"user_api_key_end_user_id": "123",
"hidden_params": {"api_key": "123"},
"litellm_parent_otel_span": MagicMock(),
"none-val": None,
"int-val": 1,
"dict-val": {"a": 1, "b": 2},
}
result = add_openai_metadata(metadata)
assert result == {
"user_api_key_end_user_id": "123",
}
def test_message_object():
from litellm.types.utils import Message
message = Message(content="Hello, world!", role="user")
assert message.content == "Hello, world!"
assert message.role == "user"
assert not hasattr(message, "audio")
assert not hasattr(message, "thinking_blocks")
assert not hasattr(message, "reasoning_content")
def test_delta_object():
from litellm.types.utils import Delta
delta = Delta(content="Hello, world!", role="user")
assert delta.content == "Hello, world!"
assert delta.role == "user"
assert not hasattr(delta, "thinking_blocks")
assert not hasattr(delta, "reasoning_content")
def test_get_provider_audio_transcription_config():
from litellm.utils import ProviderConfigManager
from litellm.types.utils import LlmProviders
for provider in LlmProviders:
config = ProviderConfigManager.get_provider_audio_transcription_config(
model="whisper-1", provider=provider
)