import sys, os, platform, time, copy, re, asyncio import threading, ast import shutil, random, traceback, requests from datetime import datetime, timedelta from typing import Optional import secrets, subprocess messages: list = [] sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path - for litellm local dev try: import uvicorn import fastapi import tomli as tomllib import appdirs import tomli_w import backoff import yaml import rq except ImportError: import sys subprocess.check_call( [ sys.executable, "-m", "pip", "install", "uvicorn", "fastapi", "tomli", "appdirs", "tomli-w", "backoff", "pyyaml", "rq" ] ) import uvicorn import fastapi import tomli as tomllib import appdirs import tomli_w import backoff import yaml import random list_of_messages = [ "'The thing I wish you improved is...'", "'A feature I really want is...'", "'The worst thing about this product is...'", "'This product would be better if...'", "'I don't like how this works...'", "'It would help me if you could add...'", "'This feature doesn't meet my needs because...'", "'I get frustrated when the product...'", ] def generate_feedback_box(): box_width = 60 # Select a random message message = random.choice(list_of_messages) print() print("\033[1;37m" + "#" + "-" * box_width + "#\033[0m") print("\033[1;37m" + "#" + " " * box_width + "#\033[0m") print("\033[1;37m" + "# {:^59} #\033[0m".format(message)) print( "\033[1;37m" + "# {:^59} #\033[0m".format("https://github.com/BerriAI/litellm/issues/new") ) print("\033[1;37m" + "#" + " " * box_width + "#\033[0m") print("\033[1;37m" + "#" + "-" * box_width + "#\033[0m") print() print(" Thank you for using LiteLLM! - Krrish & Ishaan") print() print() print() print( "\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m" ) print() print("\033[1;34mDocs: https://docs.litellm.ai/docs/simple_proxy\033[0m\n") print(f"\033[32mLiteLLM: Test your local endpoint with: \"litellm --test\" [In a new terminal tab]\033[0m\n") print() import litellm litellm.suppress_debug_info = True from fastapi import FastAPI, Request, HTTPException, status, Depends from fastapi.routing import APIRouter from fastapi.encoders import jsonable_encoder from fastapi.responses import StreamingResponse, FileResponse from fastapi.middleware.cors import CORSMiddleware from fastapi.security import OAuth2PasswordBearer import json import logging # from litellm.proxy.queue import start_rq_worker_in_background app = FastAPI(docs_url="/", title="LiteLLM API") router = APIRouter() origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) user_api_base = None user_model = None user_debug = False user_max_tokens = None user_request_timeout = None user_temperature = None user_telemetry = True user_config = None user_headers = None local_logging = True # writes logs to a local api_log.json file for debugging config_filename = "litellm.secrets.toml" config_dir = os.getcwd() config_dir = appdirs.user_config_dir("litellm") user_config_path = os.getenv( "LITELLM_CONFIG_PATH", os.path.join(config_dir, config_filename) ) oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token") experimental = False #### GLOBAL VARIABLES #### llm_router: Optional[litellm.Router] = None llm_model_list: Optional[list] = None server_settings: dict = {} log_file = "api_log.json" worker_config = None master_key = None prisma_client = None ### REDIS QUEUE ### redis_job = None redis_connection = None request_queue = None # Redis Queue for handling requests #### HELPER FUNCTIONS #### def print_verbose(print_statement): global user_debug if user_debug: print(print_statement) def usage_telemetry( feature: str, ): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off if user_telemetry: data = {"feature": feature} # "local_proxy_server" threading.Thread( target=litellm.utils.litellm_telemetry, args=(data,), daemon=True ).start() async def user_api_key_auth(request: Request): global master_key, prisma_client if master_key is None: return try: api_key = await oauth2_scheme(request=request) if api_key == master_key: return if prisma_client: valid_token = await prisma_client.litellm_verificationtoken.find_first( where={ "token": api_key, "expires": {"gte": datetime.utcnow()} # Check if the token is not expired } ) if valid_token: litellm.model_alias_map = valid_token.aliases config = valid_token.config if config != {}: global llm_router model_list = config.get("model_list", []) if llm_router == None: llm_router = litellm.Router( model_list=model_list ) else: llm_router.model_list = model_list print("\n new llm router model list", llm_router.model_list) if len(valid_token.models) == 0: # assume an empty model list means all models are allowed to be called return else: data = await request.json() model = data.get("model", None) if model in litellm.model_alias_map: model = litellm.model_alias_map[model] if model and model not in valid_token.models: raise Exception(f"Token not allowed to access model") return else: raise Exception(f"Invalid token") except Exception as e: print(f"An exception occurred - {e}") raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail={"error": "invalid user key"}, ) def prisma_setup(database_url: Optional[str]): global prisma_client if database_url: try: import os print("LiteLLM: DATABASE_URL Set in config, trying to 'pip install prisma'") os.environ["DATABASE_URL"] = database_url subprocess.run(['prisma', 'db', 'push', '--accept-data-loss']) # this looks like a weird edge case when prisma just wont start on render. we need to have the --accept-data-loss # Now you can import the Prisma Client from prisma import Client prisma_client = Client() except Exception as e: print("Error when initializing prisma, Ensure you run pip install prisma", e) def rq_setup(use_queue: bool): global request_queue, redis_connection, redis_job print(f"value of use_queue: {use_queue}") if use_queue: from litellm.proxy.queue.celery_app import celery_app, process_job from celery.result import AsyncResult request_queue = process_job redis_job = AsyncResult redis_connection = celery_app def run_ollama_serve(): command = ['ollama', 'serve'] with open(os.devnull, 'w') as devnull: process = subprocess.Popen(command, stdout=devnull, stderr=devnull) def load_router_config(router: Optional[litellm.Router], config_file_path: str): global master_key config = {} server_settings: dict = {} try: if os.path.exists(config_file_path): with open(config_file_path, 'r') as file: config = yaml.safe_load(file) else: raise Exception(f"Path to config does not exist, 'os.path.exists({config_file_path})' returned False") except Exception as e: raise Exception(f"Exception while reading Config: {e}") print(f"Loaded config YAML:\n{json.dumps(config, indent=2)}") ## ENVIRONMENT VARIABLES environment_variables = config.get('environment_variables', None) if environment_variables: for key, value in environment_variables.items(): os.environ[key] = value ## GENERAL SERVER SETTINGS (e.g. master key,..) general_settings = config.get("general_settings", None) if general_settings: ### MASTER KEY ### master_key = general_settings.get("master_key", None) ### CONNECT TO DATABASE ### database_url = general_settings.get("database_url", None) prisma_setup(database_url=database_url) ### START REDIS QUEUE ### use_queue = general_settings.get("use_queue", False) rq_setup(use_queue=use_queue) ## LITELLM MODULE SETTINGS (e.g. litellm.drop_params=True,..) litellm_settings = config.get('litellm_settings', None) if litellm_settings: for key, value in litellm_settings.items(): setattr(litellm, key, value) ## MODEL LIST model_list = config.get('model_list', None) if model_list: router = litellm.Router(model_list=model_list) print(f"\033[32mLiteLLM: Proxy initialized with Config, Set models:\033[0m") for model in model_list: print(f"\033[32m {model.get('model_name', '')}\033[0m") litellm_model_name = model["litellm_params"]["model"] # print(f"litellm_model_name: {litellm_model_name}") if "ollama" in litellm_model_name: run_ollama_serve() return router, model_list, server_settings async def generate_key_helper_fn(duration_str: str, models: list, aliases: dict, config: dict): token = f"sk-{secrets.token_urlsafe(16)}" def _duration_in_seconds(duration: str): match = re.match(r"(\d+)([smhd]?)", duration) if not match: raise ValueError("Invalid duration format") value, unit = match.groups() value = int(value) if unit == "s": return value elif unit == "m": return value * 60 elif unit == "h": return value * 3600 elif unit == "d": return value * 86400 else: raise ValueError("Unsupported duration unit") duration = _duration_in_seconds(duration=duration_str) expires = datetime.utcnow() + timedelta(seconds=duration) aliases_json = json.dumps(aliases) config_json = json.dumps(config) try: db = prisma_client # Create a new verification token (you may want to enhance this logic based on your needs) verification_token_data = { "token": token, "expires": expires, "models": models, "aliases": aliases_json, "config": config_json } print(f"verification_token_data: {verification_token_data}") new_verification_token = await db.litellm_verificationtoken.create( # type: ignore {**verification_token_data} # type: ignore ) except Exception as e: traceback.print_exc() raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR) return {"token": new_verification_token.token, "expires": new_verification_token.expires} async def generate_key_cli_task(duration_str): task = asyncio.create_task(generate_key_helper_fn(duration_str=duration_str)) await task def save_worker_config(**data): import json os.environ["WORKER_CONFIG"] = json.dumps(data) def initialize( model, alias, api_base, api_version, debug, temperature, max_tokens, request_timeout, max_budget, telemetry, drop_params, add_function_to_prompt, headers, save, config, ): global user_model, user_api_base, user_debug, user_max_tokens, user_request_timeout, user_temperature, user_telemetry, user_headers, experimental, llm_model_list, llm_router, server_settings generate_feedback_box() user_model = model user_debug = debug dynamic_config = {"general": {}, user_model: {}} if config: llm_router, llm_model_list, server_settings = load_router_config(router=llm_router, config_file_path=config) if headers: # model-specific param user_headers = headers dynamic_config[user_model]["headers"] = headers if api_base: # model-specific param user_api_base = api_base dynamic_config[user_model]["api_base"] = api_base if api_version: os.environ[ "AZURE_API_VERSION" ] = api_version # set this for azure - litellm can read this from the env if max_tokens: # model-specific param user_max_tokens = max_tokens dynamic_config[user_model]["max_tokens"] = max_tokens if temperature: # model-specific param user_temperature = temperature dynamic_config[user_model]["temperature"] = temperature if request_timeout: user_request_timeout = request_timeout dynamic_config[user_model]["request_timeout"] = request_timeout if alias: # model-specific param dynamic_config[user_model]["alias"] = alias if drop_params == True: # litellm-specific param litellm.drop_params = True dynamic_config["general"]["drop_params"] = True if add_function_to_prompt == True: # litellm-specific param litellm.add_function_to_prompt = True dynamic_config["general"]["add_function_to_prompt"] = True if max_budget: # litellm-specific param litellm.max_budget = max_budget dynamic_config["general"]["max_budget"] = max_budget if debug==True: # litellm-specific param litellm.set_verbose = True if experimental: pass if save: pass # save_params_to_config(dynamic_config) # with open(user_config_path) as f: # print(f.read()) # print("\033[1;32mDone successfully\033[0m") user_telemetry = telemetry usage_telemetry(feature="local_proxy_server") # for streaming def data_generator(response): print_verbose("inside generator") for chunk in response: print_verbose(f"returned chunk: {chunk}") try: yield f"data: {json.dumps(chunk.dict())}\n\n" except: yield f"data: {json.dumps(chunk)}\n\n" def litellm_completion(*args, **kwargs): global user_temperature, user_request_timeout, user_max_tokens, user_api_base call_type = kwargs.pop("call_type") # override with user settings, these are params passed via cli if user_temperature: kwargs["temperature"] = user_temperature if user_request_timeout: kwargs["request_timeout"] = user_request_timeout if user_max_tokens: kwargs["max_tokens"] = user_max_tokens if user_api_base: kwargs["api_base"] = user_api_base ## ROUTE TO CORRECT ENDPOINT ## router_model_names = [m["model_name"] for m in llm_model_list] if llm_model_list is not None else [] try: if llm_router is not None and kwargs["model"] in router_model_names: # model in router model list if call_type == "chat_completion": response = llm_router.completion(*args, **kwargs) elif call_type == "text_completion": response = llm_router.text_completion(*args, **kwargs) else: if call_type == "chat_completion": response = litellm.completion(*args, **kwargs) elif call_type == "text_completion": response = litellm.text_completion(*args, **kwargs) except Exception as e: raise e if 'stream' in kwargs and kwargs['stream'] == True: # use generate_responses to stream responses return StreamingResponse(data_generator(response), media_type='text/event-stream') return response @app.on_event("startup") async def startup_event(): global prisma_client import json worker_config = json.loads(os.getenv("WORKER_CONFIG")) initialize(**worker_config) if prisma_client: await prisma_client.connect() @app.on_event("shutdown") async def shutdown_event(): global prisma_client if prisma_client: print("Disconnecting from Prisma") await prisma_client.disconnect() #### API ENDPOINTS #### @router.get("/v1/models", dependencies=[Depends(user_api_key_auth)]) @router.get("/models", dependencies=[Depends(user_api_key_auth)]) # if project requires model list def model_list(): global llm_model_list, server_settings all_models = [] if server_settings.get("infer_model_from_keys", False): all_models = litellm.utils.get_valid_models() if llm_model_list: all_models += llm_model_list if user_model is not None: all_models += user_model ### CHECK OLLAMA MODELS ### try: response = requests.get("http://0.0.0.0:11434/api/tags") models = response.json()["models"] ollama_models = [m["name"].replace(":latest", "") for m in models] all_models.extend(ollama_models) except Exception as e: traceback.print_exc() return dict( data=[ { "id": model, "object": "model", "created": 1677610602, "owned_by": "openai", } for model in all_models ], object="list", ) @router.post("/v1/completions", dependencies=[Depends(user_api_key_auth)]) @router.post("/completions", dependencies=[Depends(user_api_key_auth)]) @router.post("/engines/{model:path}/completions", dependencies=[Depends(user_api_key_auth)]) async def completion(request: Request, model: Optional[str] = None): try: body = await request.body() body_str = body.decode() try: data = ast.literal_eval(body_str) except: data = json.loads(body_str) data["model"] = ( server_settings.get("completion_model", None) # server default or user_model # model name passed via cli args or model # for azure deployments or data["model"] # default passed in http request ) if user_model: data["model"] = user_model data["call_type"] = "text_completion" return litellm_completion( **data ) except Exception as e: print(f"\033[1;31mAn error occurred: {e}\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`") error_traceback = traceback.format_exc() error_msg = f"{str(e)}\n\n{error_traceback}" try: status = e.status_code # type: ignore except: status = 500 raise HTTPException( status_code=status, detail=error_msg ) @router.post("/v1/chat/completions", dependencies=[Depends(user_api_key_auth)]) @router.post("/chat/completions", dependencies=[Depends(user_api_key_auth)]) @router.post("/openai/deployments/{model:path}/chat/completions", dependencies=[Depends(user_api_key_auth)]) # azure compatible endpoint async def chat_completion(request: Request, model: Optional[str] = None): global server_settings try: body = await request.body() body_str = body.decode() try: data = ast.literal_eval(body_str) except: data = json.loads(body_str) data["model"] = ( server_settings.get("completion_model", None) # server default or user_model # model name passed via cli args or model # for azure deployments or data["model"] # default passed in http request ) data["call_type"] = "chat_completion" return litellm_completion( **data ) except Exception as e: print(f"\033[1;31mAn error occurred: {e}\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`") error_traceback = traceback.format_exc() error_msg = f"{str(e)}\n\n{error_traceback}" try: status = e.status_code # type: ignore except: status = 500 raise HTTPException( status_code=status, detail=error_msg ) @router.post("/key/generate", dependencies=[Depends(user_api_key_auth)]) async def generate_key_fn(request: Request): data = await request.json() duration_str = data.get("duration", "1h") # Default to 1 hour if duration is not provided models = data.get("models", []) # Default to an empty list (meaning allow token to call all models) aliases = data.get("aliases", {}) # Default to an empty dict (no alias mappings, on top of anything in the config.yaml model_list) config = data.get("config", {}) if isinstance(models, list): response = await generate_key_helper_fn(duration_str=duration_str, models=models, aliases=aliases, config=config) return {"key": response["token"], "expires": response["expires"]} else: raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail={"error": "models param must be a list"}, ) @router.post("/queue/request", dependencies=[Depends(user_api_key_auth)]) async def async_chat_completions(request: Request): global request_queue, llm_model_list body = await request.body() body_str = body.decode() try: data = ast.literal_eval(body_str) except: data = json.loads(body_str) data["model"] = ( server_settings.get("completion_model", None) # server default or user_model # model name passed via cli args or data["model"] # default passed in http request ) data["llm_model_list"] = llm_model_list print(f"data: {data}") job = request_queue.apply_async(kwargs=data) return {"id": job.id, "url": f"/queue/response/{job.id}", "eta": 5, "status": "queued"} pass @router.get("/queue/response/{task_id}", dependencies=[Depends(user_api_key_auth)]) async def async_chat_completions(request: Request, task_id: str): global redis_connection, redis_job try: job = redis_job(task_id, app=redis_connection) if job.ready(): return job.result else: return {'status': 'processing'} except Exception as e: return {"status": "finished", "result": str(e)} @router.get("/ollama_logs", dependencies=[Depends(user_api_key_auth)]) async def retrieve_server_log(request: Request): filepath = os.path.expanduser("~/.ollama/logs/server.log") return FileResponse(filepath) @router.get("/") async def home(request: Request): return "LiteLLM: RUNNING" app.include_router(router)