#### What this tests #### # This tests if prompts are being correctly formatted import os import sys import pytest sys.path.insert(0, os.path.abspath("../..")) from typing import Union # from litellm.llms.prompt_templates.factory import prompt_factory import litellm from litellm import completion from litellm.llms.prompt_templates.factory import ( _bedrock_tools_pt, anthropic_messages_pt, anthropic_pt, claude_2_1_pt, convert_to_anthropic_image_obj, convert_url_to_base64, llama_2_chat_pt, prompt_factory, ) def test_llama_3_prompt(): messages = [ {"role": "system", "content": "You are a good bot"}, {"role": "user", "content": "Hey, how's it going?"}, ] received_prompt = prompt_factory( model="meta-llama/Meta-Llama-3-8B-Instruct", messages=messages ) print(f"received_prompt: {received_prompt}") expected_prompt = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a good bot<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHey, how's it going?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""" assert received_prompt == expected_prompt def test_codellama_prompt_format(): messages = [ {"role": "system", "content": "You are a good bot"}, {"role": "user", "content": "Hey, how's it going?"}, ] expected_prompt = "[INST] <>\nYou are a good bot\n<>\n [/INST]\n[INST] Hey, how's it going? [/INST]\n" assert llama_2_chat_pt(messages) == expected_prompt def test_claude_2_1_pt_formatting(): # Test case: User only, should add Assistant messages = [{"role": "user", "content": "Hello"}] expected_prompt = "\n\nHuman: Hello\n\nAssistant: " assert claude_2_1_pt(messages) == expected_prompt # Test case: System, User, and Assistant "pre-fill" sequence, # Should return pre-fill messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": 'Please return "Hello World" as a JSON object.'}, {"role": "assistant", "content": "{"}, ] expected_prompt = 'You are a helpful assistant.\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {' assert claude_2_1_pt(messages) == expected_prompt # Test case: System, Assistant sequence, should insert blank Human message # before Assistant pre-fill messages = [ {"role": "system", "content": "You are a storyteller."}, {"role": "assistant", "content": "Once upon a time, there "}, ] expected_prompt = ( "You are a storyteller.\n\nHuman: \n\nAssistant: Once upon a time, there " ) assert claude_2_1_pt(messages) == expected_prompt # Test case: System, User sequence messages = [ {"role": "system", "content": "System reboot"}, {"role": "user", "content": "Is everything okay?"}, ] expected_prompt = "System reboot\n\nHuman: Is everything okay?\n\nAssistant: " assert claude_2_1_pt(messages) == expected_prompt def test_anthropic_pt_formatting(): # Test case: User only, should add Assistant messages = [{"role": "user", "content": "Hello"}] expected_prompt = "\n\nHuman: Hello\n\nAssistant: " assert anthropic_pt(messages) == expected_prompt # Test case: System, User, and Assistant "pre-fill" sequence, # Should return pre-fill messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": 'Please return "Hello World" as a JSON object.'}, {"role": "assistant", "content": "{"}, ] expected_prompt = '\n\nHuman: You are a helpful assistant.\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {' assert anthropic_pt(messages) == expected_prompt # Test case: System, Assistant sequence, should NOT insert blank Human message # before Assistant pre-fill, because "System" messages are Human # messages wrapped with messages = [ {"role": "system", "content": "You are a storyteller."}, {"role": "assistant", "content": "Once upon a time, there "}, ] expected_prompt = "\n\nHuman: You are a storyteller.\n\nAssistant: Once upon a time, there " assert anthropic_pt(messages) == expected_prompt # Test case: System, User sequence messages = [ {"role": "system", "content": "System reboot"}, {"role": "user", "content": "Is everything okay?"}, ] expected_prompt = "\n\nHuman: System reboot\n\nHuman: Is everything okay?\n\nAssistant: " assert anthropic_pt(messages) == expected_prompt def test_anthropic_messages_pt(): # Test case: No messages (filtered system messages only) litellm.modify_params = True messages = [] expected_messages = [{"role": "user", "content": [{"type": "text", "text": "."}]}] assert ( anthropic_messages_pt( messages, model="claude-3-sonnet-20240229", llm_provider="anthropic" ) == expected_messages ) # Test case: No messages (filtered system messages only) when modify_params is False should raise error litellm.modify_params = False messages = [] with pytest.raises(Exception) as err: anthropic_messages_pt( messages, model="claude-3-sonnet-20240229", llm_provider="anthropic" ) assert "Invalid first message" in str(err.value) def test_anthropic_messages_nested_pt(): from litellm.types.llms.anthropic import ( AnthopicMessagesAssistantMessageParam, AnthropicMessagesUserMessageParam, ) messages = [ {"content": [{"text": "here is a task", "type": "text"}], "role": "user"}, { "content": [{"text": "sure happy to help", "type": "text"}], "role": "assistant", }, { "content": [ { "text": "Here is a screenshot of the current desktop with the " "mouse coordinates (500, 350). Please select an action " "from the provided schema.", "type": "text", } ], "role": "user", }, ] new_messages = anthropic_messages_pt( messages, model="claude-3-sonnet-20240229", llm_provider="anthropic" ) assert isinstance(new_messages[1]["content"][0]["text"], str) # codellama_prompt_format() def test_bedrock_tool_calling_pt(): tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] converted_tools = _bedrock_tools_pt(tools=tools) print(converted_tools) def test_convert_url_to_img(): response_url = convert_url_to_base64( url="https://images.pexels.com/photos/1319515/pexels-photo-1319515.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=1" ) assert "image/jpeg" in response_url @pytest.mark.parametrize( "url, expected_media_type", [ ("", "image/jpeg"), ("data:application/pdf;base64,1234", "application/pdf"), (r"data:image\/jpeg;base64,1234", "image/jpeg"), ], ) def test_base64_image_input(url, expected_media_type): response = convert_to_anthropic_image_obj(openai_image_url=url) assert response["media_type"] == expected_media_type