import os, dotenv from dotenv import load_dotenv load_dotenv() from llama_index.llms import AzureOpenAI from llama_index.embeddings import AzureOpenAIEmbedding from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext llm = AzureOpenAI( engine="azure-gpt-3.5", temperature=0.0, azure_endpoint="http://0.0.0.0:4000", api_key="sk-1234", api_version="2023-07-01-preview", ) embed_model = AzureOpenAIEmbedding( deployment_name="azure-embedding-model", azure_endpoint="http://0.0.0.0:4000", api_key="sk-1234", api_version="2023-07-01-preview", ) # response = llm.complete("The sky is a beautiful blue and") # print(response) documents = SimpleDirectoryReader("llama_index_data").load_data() service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model) index = VectorStoreIndex.from_documents(documents, service_context=service_context) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") print(response)