import os, openai, sys from typing import Any from functools import partial import dotenv, traceback, random, asyncio, time from copy import deepcopy import litellm from litellm import client, logging, exception_type, timeout, get_optional_params, get_litellm_params from litellm.utils import get_secret, install_and_import, CustomStreamWrapper, read_config_args from .llms.anthropic import AnthropicLLM from .llms.huggingface_restapi import HuggingfaceRestAPILLM import tiktoken from concurrent.futures import ThreadPoolExecutor encoding = tiktoken.get_encoding("cl100k_base") from litellm.utils import get_secret, install_and_import, CustomStreamWrapper, read_config_args from litellm.utils import get_ollama_response_stream, stream_to_string, together_ai_completion_streaming ####### ENVIRONMENT VARIABLES ################### dotenv.load_dotenv() # Loading env variables using dotenv new_response = { "choices": [ { "finish_reason": "stop", "index": 0, "message": { "role": "assistant" } } ] } # TODO add translations ####### COMPLETION ENDPOINTS ################ ############################################# async def acompletion(*args, **kwargs): loop = asyncio.get_event_loop() # Use a partial function to pass your keyword arguments func = partial(completion, *args, **kwargs) # Call the synchronous function using run_in_executor return await loop.run_in_executor(None, func) @client # @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(2), reraise=True, retry_error_callback=lambda retry_state: setattr(retry_state.outcome, 'retry_variable', litellm.retry)) # retry call, turn this off by setting `litellm.retry = False` @timeout(600) ## set timeouts, in case calls hang (e.g. Azure) - default is 60s, override with `force_timeout` def completion( model, messages,# required params # Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create functions=[], function_call="", # optional params temperature=1, top_p=1, n=1, stream=False, stop=None, max_tokens=float('inf'), presence_penalty=0, frequency_penalty=0, logit_bias={}, user="", deployment_id=None, # Optional liteLLM function params *, return_async=False, api_key=None, force_timeout=600, logger_fn=None, verbose=False, azure=False, custom_llm_provider=None, custom_api_base=None, # model specific optional params # used by text-bison only top_k=40, request_timeout=0, # unused var for old version of OpenAI API ): try: global new_response if azure: # this flag is deprecated, remove once notebooks are also updated. custom_llm_provider="azure" args = locals() model_response = deepcopy(new_response) # deep copy the default response format so we can mutate it and it's thread-safe. # check if user passed in any of the OpenAI optional params optional_params = get_optional_params( functions=functions, function_call=function_call, temperature=temperature, top_p=top_p, n=n, stream=stream, stop=stop, max_tokens=max_tokens, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, logit_bias=logit_bias, user=user, deployment_id=deployment_id, # params to identify the model model=model, custom_llm_provider=custom_llm_provider, top_k=top_k, ) # For logging - save the values of the litellm-specific params passed in litellm_params = get_litellm_params( return_async=return_async, api_key=api_key, force_timeout=force_timeout, logger_fn=logger_fn, verbose=verbose, custom_llm_provider=custom_llm_provider, custom_api_base=custom_api_base) if custom_llm_provider == "azure": # azure configs openai.api_type = "azure" openai.api_base = litellm.api_base if litellm.api_base is not None else get_secret("AZURE_API_BASE") openai.api_version = litellm.api_version if litellm.api_version is not None else get_secret("AZURE_API_VERSION") # set key if api_key: openai.api_key = api_key elif litellm.azure_key: openai.api_key = litellm.azure_key else: openai.api_key = get_secret("AZURE_API_KEY") ## LOGGING logging(model=model, input=messages, additional_args=optional_params, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn) ## COMPLETION CALL if litellm.headers: response = openai.ChatCompletion.create( engine=model, messages = messages, headers = litellm.headers, **optional_params, ) else: response = openai.ChatCompletion.create( model=model, messages = messages, **optional_params ) elif model in litellm.open_ai_chat_completion_models or custom_llm_provider == "custom_openai": # allow user to make an openai call with a custom base openai.api_type = "openai" # note: if a user sets a custom base - we should ensure this works api_base = custom_api_base if custom_api_base is not None else litellm.api_base # allow for the setting of dynamic and stateful api-bases openai.api_base = api_base if api_base is not None else "https://api.openai.com/v1" openai.api_version = None if litellm.organization: openai.organization = litellm.organization if api_key: openai.api_key = api_key elif litellm.openai_key: openai.api_key = litellm.openai_key else: openai.api_key = get_secret("OPENAI_API_KEY") ## LOGGING logging(model=model, input=messages, additional_args=args, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn) ## COMPLETION CALL if litellm.headers: response = openai.ChatCompletion.create( model=model, messages = messages, headers = litellm.headers, **optional_params ) else: response = openai.ChatCompletion.create( model=model, messages = messages, **optional_params ) elif model in litellm.open_ai_text_completion_models: openai.api_type = "openai" openai.api_base = litellm.api_base if litellm.api_base is not None else "https://api.openai.com/v1" openai.api_version = None if api_key: openai.api_key = api_key elif litellm.openai_key: openai.api_key = litellm.openai_key else: openai.api_key = get_secret("OPENAI_API_KEY") if litellm.organization: openai.organization = litellm.organization prompt = " ".join([message["content"] for message in messages]) ## LOGGING logging(model=model, input=prompt, additional_args=optional_params, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn) ## COMPLETION CALL if litellm.headers: response = openai.Completion.create( model=model, prompt = prompt, headers = litellm.headers, ) else: response = openai.Completion.create( model=model, prompt = prompt ) completion_response = response["choices"][0]["text"] ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn) ## RESPONSE OBJECT model_response["choices"][0]["message"]["content"] = completion_response model_response["created"] = response["created"] model_response["model"] = model model_response["usage"] = response["usage"] response = model_response elif "replicate" in model or custom_llm_provider == "replicate": # import replicate/if it fails then pip install replicate install_and_import("replicate") import replicate # replicate defaults to os.environ.get("REPLICATE_API_TOKEN") # checking in case user set it to REPLICATE_API_KEY instead if not get_secret("REPLICATE_API_TOKEN") and get_secret("REPLICATE_API_KEY"): replicate_api_token = get_secret("REPLICATE_API_KEY") os.environ["REPLICATE_API_TOKEN"] = replicate_api_token elif api_key: os.environ["REPLICATE_API_TOKEN"] = api_key elif litellm.replicate_key: os.environ["REPLICATE_API_TOKEN"] = litellm.replicate_key prompt = " ".join([message["content"] for message in messages]) input = {"prompt": prompt} if "max_tokens" in optional_params: input["max_length"] = max_tokens # for t5 models input["max_new_tokens"] = max_tokens # for llama2 models ## LOGGING logging(model=model, input=input, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn) ## COMPLETION CALL output = replicate.run( model, input=input) if 'stream' in optional_params and optional_params['stream'] == True: # don't try to access stream object, # let the stream handler know this is replicate response = CustomStreamWrapper(output, "replicate") return response response = "" for item in output: response += item completion_response = response ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn) prompt_tokens = len(encoding.encode(prompt)) completion_tokens = len(encoding.encode(completion_response)) ## RESPONSE OBJECT model_response["choices"][0]["message"]["content"] = completion_response model_response["created"] = time.time() model_response["model"] = model model_response["usage"] = { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens } response = model_response elif model in litellm.anthropic_models: anthropic_key = api_key if api_key is not None else litellm.anthropic_key anthropic_client = AnthropicLLM(encoding=encoding, default_max_tokens_to_sample=litellm.max_tokens, api_key=anthropic_key) model_response = anthropic_client.completion(model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn) if 'stream' in optional_params and optional_params['stream'] == True: # don't try to access stream object, response = CustomStreamWrapper(model_response, model) return response response = model_response elif model in litellm.openrouter_models or custom_llm_provider == "openrouter": openai.api_type = "openai" # not sure if this will work after someone first uses another API openai.api_base = litellm.api_base if litellm.api_base is not None else "https://openrouter.ai/api/v1" openai.api_version = None if litellm.organization: openai.organization = litellm.organization if api_key: openai.api_key = api_key elif litellm.openrouter_key: openai.api_key = litellm.openrouter_key else: openai.api_key = get_secret("OPENROUTER_API_KEY") ## LOGGING logging(model=model, input=messages, additional_args=optional_params, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn) ## COMPLETION CALL if litellm.headers: response = openai.ChatCompletion.create( model=model, messages = messages, headers = litellm.headers, **optional_params ) else: openrouter_site_url = get_secret("OR_SITE_URL") openrouter_app_name = get_secret("OR_APP_NAME") # if openrouter_site_url is None, set it to https://litellm.ai if openrouter_site_url is None: openrouter_site_url = "https://litellm.ai" # if openrouter_app_name is None, set it to liteLLM if openrouter_app_name is None: openrouter_app_name = "liteLLM" response = openai.ChatCompletion.create( model=model, messages = messages, headers = { "HTTP-Referer": openrouter_site_url, # To identify your site "X-Title": openrouter_app_name # To identify your app }, **optional_params ) elif model in litellm.cohere_models: # import cohere/if it fails then pip install cohere install_and_import("cohere") import cohere if api_key: cohere_key = api_key elif litellm.cohere_key: cohere_key = litellm.cohere_key else: cohere_key = get_secret("COHERE_API_KEY") co = cohere.Client(cohere_key) prompt = " ".join([message["content"] for message in messages]) ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn) ## COMPLETION CALL response = co.generate( model=model, prompt = prompt, **optional_params ) if 'stream' in optional_params and optional_params['stream'] == True: # don't try to access stream object, response = CustomStreamWrapper(response, model) return response completion_response = response[0].text ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn) prompt_tokens = len(encoding.encode(prompt)) completion_tokens = len(encoding.encode(completion_response)) ## RESPONSE OBJECT model_response["choices"][0]["message"]["content"] = completion_response model_response["created"] = time.time() model_response["model"] = model model_response["usage"] = { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens } response = model_response elif model in litellm.huggingface_models or custom_llm_provider == "huggingface": custom_llm_provider = "huggingface" huggingface_key = api_key if api_key is not None else litellm.huggingface_key huggingface_client = HuggingfaceRestAPILLM(encoding=encoding, api_key=huggingface_key) model_response = huggingface_client.completion(model=model, messages=messages, custom_api_base=custom_api_base, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn) if 'stream' in optional_params and optional_params['stream'] == True: # don't try to access stream object, response = CustomStreamWrapper(model_response, model, custom_llm_provider="huggingface") return response response = model_response elif custom_llm_provider == "together_ai": import requests TOGETHER_AI_TOKEN = get_secret("TOGETHER_AI_TOKEN") headers = {"Authorization": f"Bearer {TOGETHER_AI_TOKEN}"} endpoint = 'https://api.together.xyz/inference' prompt = " ".join([message["content"] for message in messages]) # TODO: Add chat support for together AI ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn) if stream == True: return together_ai_completion_streaming({ "model": model, "prompt": prompt, "request_type": "language-model-inference", **optional_params }, headers=headers) res = requests.post(endpoint, json={ "model": model, "prompt": prompt, "request_type": "language-model-inference", **optional_params }, headers=headers ) ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": res.text}, logger_fn=logger_fn) completion_response = res.json()['output']['choices'][0]['text'] prompt_tokens = len(encoding.encode(prompt)) completion_tokens = len(encoding.encode(completion_response)) ## RESPONSE OBJECT model_response["choices"][0]["message"]["content"] = completion_response model_response["created"] = time.time() model_response["model"] = model model_response["usage"] = { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens } response = model_response elif model in litellm.vertex_chat_models: # import vertexai/if it fails then pip install vertexai# import cohere/if it fails then pip install cohere install_and_import("vertexai") import vertexai from vertexai.preview.language_models import ChatModel, InputOutputTextPair vertexai.init(project=litellm.vertex_project, location=litellm.vertex_location) # vertexai does not use an API key, it looks for credentials.json in the environment prompt = " ".join([message["content"] for message in messages]) ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"litellm_params": litellm_params, "optional_params": optional_params}, logger_fn=logger_fn) chat_model = ChatModel.from_pretrained(model) chat = chat_model.start_chat() completion_response = chat.send_message(prompt, **optional_params) ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn) ## RESPONSE OBJECT model_response["choices"][0]["message"]["content"] = completion_response model_response["created"] = time.time() model_response["model"] = model elif model in litellm.vertex_text_models: # import vertexai/if it fails then pip install vertexai# import cohere/if it fails then pip install cohere install_and_import("vertexai") import vertexai from vertexai.language_models import TextGenerationModel vertexai.init(project=litellm.vertex_project, location=litellm.vertex_location) # vertexai does not use an API key, it looks for credentials.json in the environment prompt = " ".join([message["content"] for message in messages]) ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn) vertex_model = TextGenerationModel.from_pretrained(model) completion_response= vertex_model.predict(prompt, **optional_params) ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn) ## RESPONSE OBJECT model_response["choices"][0]["message"]["content"] = completion_response model_response["created"] = time.time() model_response["model"] = model response = model_response elif model in litellm.ai21_models: install_and_import("ai21") import ai21 ai21.api_key = get_secret("AI21_API_KEY") prompt = " ".join([message["content"] for message in messages]) ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn) ai21_response = ai21.Completion.execute( model=model, prompt=prompt, ) completion_response = ai21_response['completions'][0]['data']['text'] ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn) ## RESPONSE OBJECT model_response["choices"][0]["message"]["content"] = completion_response model_response["created"] = time.time() model_response["model"] = model response = model_response elif custom_llm_provider == "ollama": endpoint = litellm.api_base if litellm.api_base is not None else custom_api_base prompt = " ".join([message["content"] for message in messages]) ## LOGGING logging(model=model, input=prompt, azure=azure, logger_fn=logger_fn) generator = get_ollama_response_stream(endpoint, model, prompt) # assume all responses are streamed return generator elif custom_llm_provider == "baseten" or litellm.api_base=="https://app.baseten.co": import baseten base_ten_key = get_secret('BASETEN_API_KEY') baseten.login(base_ten_key) prompt = " ".join([message["content"] for message in messages]) ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn) base_ten__model = baseten.deployed_model_version_id(model) completion_response = base_ten__model.predict({"prompt": prompt}) if type(completion_response) == dict: completion_response = completion_response["data"] if type(completion_response) == dict: completion_response = completion_response["generated_text"] logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn) ## RESPONSE OBJECT model_response["choices"][0]["message"]["content"] = completion_response model_response["created"] = time.time() model_response["model"] = model response = model_response elif custom_llm_provider == "petals" or "chat.petals.dev" in litellm.api_base: url = "https://chat.petals.dev/api/v1/generate" import requests prompt = " ".join([message["content"] for message in messages]) ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn) response = requests.post(url, data={"inputs": prompt, "max_new_tokens": 100, "model": model}) ## LOGGING logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": response}, logger_fn=logger_fn) completion_response = response.json()["outputs"] # RESPONSE OBJECT model_response["choices"][0]["message"]["content"] = completion_response model_response["created"] = time.time() model_response["model"] = model response = model_response else: ## LOGGING logging(model=model, input=messages, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn) args = locals() raise ValueError(f"Unable to map your input to a model. Check your input - {args}") return response except Exception as e: ## LOGGING logging(model=model, input=messages, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn, exception=e) ## Map to OpenAI Exception raise exception_type(model=model, custom_llm_provider=custom_llm_provider, original_exception=e) def batch_completion(*args, **kwargs): batch_messages = args[1] if len(args) > 1 else kwargs.get("messages") completions = [] with ThreadPoolExecutor() as executor: for message_list in batch_messages: if len(args) > 1: args_modified = list(args) args_modified[1] = message_list future = executor.submit(completion, *args_modified) else: kwargs_modified = dict(kwargs) kwargs_modified["messages"] = message_list future = executor.submit(completion, *args, **kwargs_modified) completions.append(future) # Retrieve the results from the futures results = [future.result() for future in completions] return results ### EMBEDDING ENDPOINTS #################### @client @timeout(60) ## set timeouts, in case calls hang (e.g. Azure) - default is 60s, override with `force_timeout` def embedding(model, input=[], azure=False, force_timeout=60, logger_fn=None): try: response = None if azure == True: # azure configs openai.api_type = "azure" openai.api_base = get_secret("AZURE_API_BASE") openai.api_version = get_secret("AZURE_API_VERSION") openai.api_key = get_secret("AZURE_API_KEY") ## LOGGING logging(model=model, input=input, azure=azure, logger_fn=logger_fn) ## EMBEDDING CALL response = openai.Embedding.create(input=input, engine=model) print_verbose(f"response_value: {str(response)[:50]}") elif model in litellm.open_ai_embedding_models: openai.api_type = "openai" openai.api_base = "https://api.openai.com/v1" openai.api_version = None openai.api_key = get_secret("OPENAI_API_KEY") ## LOGGING logging(model=model, input=input, azure=azure, logger_fn=logger_fn) ## EMBEDDING CALL response = openai.Embedding.create(input=input, model=model) print_verbose(f"response_value: {str(response)[:50]}") else: logging(model=model, input=input, azure=azure, logger_fn=logger_fn) args = locals() raise ValueError(f"No valid embedding model args passed in - {args}") return response except Exception as e: # log the original exception logging(model=model, input=input, azure=azure, logger_fn=logger_fn, exception=e) ## Map to OpenAI Exception raise exception_type(model=model, original_exception=e) raise e ####### HELPER FUNCTIONS ################ ## Set verbose to true -> ```litellm.set_verbose = True``` def print_verbose(print_statement): if litellm.set_verbose: print(f"LiteLLM: {print_statement}") if random.random() <= 0.3: print("Get help - https://discord.com/invite/wuPM9dRgDw") def config_completion(**kwargs): if litellm.config_path != None: config_args = read_config_args(litellm.config_path) # overwrite any args passed in with config args return completion(**kwargs, **config_args) else: raise ValueError("No config path set, please set a config path using `litellm.config_path = 'path/to/config.json'`")