from itertools import chain import requests, types, time # type: ignore import json, uuid import traceback from typing import Optional import litellm import httpx, aiohttp, asyncio # type: ignore from .prompt_templates.factory import prompt_factory, custom_prompt class OllamaError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message self.request = httpx.Request(method="POST", url="http://localhost:11434") self.response = httpx.Response(status_code=status_code, request=self.request) super().__init__( self.message ) # Call the base class constructor with the parameters it needs class OllamaConfig: """ Reference: https://github.com/ollama/ollama/blob/main/docs/api.md#parameters The class `OllamaConfig` provides the configuration for the Ollama's API interface. Below are the parameters: - `mirostat` (int): Enable Mirostat sampling for controlling perplexity. Default is 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0. Example usage: mirostat 0 - `mirostat_eta` (float): Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. Default: 0.1. Example usage: mirostat_eta 0.1 - `mirostat_tau` (float): Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. Default: 5.0. Example usage: mirostat_tau 5.0 - `num_ctx` (int): Sets the size of the context window used to generate the next token. Default: 2048. Example usage: num_ctx 4096 - `num_gqa` (int): The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b. Example usage: num_gqa 1 - `num_gpu` (int): The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. Example usage: num_gpu 0 - `num_thread` (int): Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Example usage: num_thread 8 - `repeat_last_n` (int): Sets how far back for the model to look back to prevent repetition. Default: 64, 0 = disabled, -1 = num_ctx. Example usage: repeat_last_n 64 - `repeat_penalty` (float): Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. Default: 1.1. Example usage: repeat_penalty 1.1 - `temperature` (float): The temperature of the model. Increasing the temperature will make the model answer more creatively. Default: 0.8. Example usage: temperature 0.7 - `stop` (string[]): Sets the stop sequences to use. Example usage: stop "AI assistant:" - `tfs_z` (float): Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. Default: 1. Example usage: tfs_z 1 - `num_predict` (int): Maximum number of tokens to predict when generating text. Default: 128, -1 = infinite generation, -2 = fill context. Example usage: num_predict 42 - `top_k` (int): Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. Default: 40. Example usage: top_k 40 - `top_p` (float): Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. Default: 0.9. Example usage: top_p 0.9 - `system` (string): system prompt for model (overrides what is defined in the Modelfile) - `template` (string): the full prompt or prompt template (overrides what is defined in the Modelfile) """ mirostat: Optional[int] = None mirostat_eta: Optional[float] = None mirostat_tau: Optional[float] = None num_ctx: Optional[int] = None num_gqa: Optional[int] = None num_thread: Optional[int] = None repeat_last_n: Optional[int] = None repeat_penalty: Optional[float] = None temperature: Optional[float] = None stop: Optional[list] = ( None # stop is a list based on this - https://github.com/ollama/ollama/pull/442 ) tfs_z: Optional[float] = None num_predict: Optional[int] = None top_k: Optional[int] = None top_p: Optional[float] = None system: Optional[str] = None template: Optional[str] = None def __init__( self, mirostat: Optional[int] = None, mirostat_eta: Optional[float] = None, mirostat_tau: Optional[float] = None, num_ctx: Optional[int] = None, num_gqa: Optional[int] = None, num_thread: Optional[int] = None, repeat_last_n: Optional[int] = None, repeat_penalty: Optional[float] = None, temperature: Optional[float] = None, stop: Optional[list] = None, tfs_z: Optional[float] = None, num_predict: Optional[int] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, system: Optional[str] = None, template: Optional[str] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return { k: v for k, v in cls.__dict__.items() if not k.startswith("__") and not isinstance( v, ( types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod, ), ) and v is not None } # ollama wants plain base64 jpeg/png files as images. strip any leading dataURI # and convert to jpeg if necessary. def _convert_image(image): import base64, io try: from PIL import Image except: raise Exception( "ollama image conversion failed please run `pip install Pillow`" ) orig = image if image.startswith("data:"): image = image.split(",")[-1] try: image_data = Image.open(io.BytesIO(base64.b64decode(image))) if image_data.format in ["JPEG", "PNG"]: return image except: return orig jpeg_image = io.BytesIO() image_data.convert("RGB").save(jpeg_image, "JPEG") jpeg_image.seek(0) return base64.b64encode(jpeg_image.getvalue()).decode("utf-8") # ollama implementation def get_ollama_response( api_base="http://localhost:11434", model="llama2", prompt="Why is the sky blue?", optional_params=None, logging_obj=None, acompletion: bool = False, model_response=None, encoding=None, ): if api_base.endswith("/api/generate"): url = api_base else: url = f"{api_base}/api/generate" ## Load Config config = litellm.OllamaConfig.get_config() for k, v in config.items(): if ( k not in optional_params ): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in optional_params[k] = v stream = optional_params.pop("stream", False) format = optional_params.pop("format", None) images = optional_params.pop("images", None) data = { "model": model, "prompt": prompt, "options": optional_params, "stream": stream, } if format is not None: data["format"] = format if images is not None: data["images"] = [_convert_image(image) for image in images] ## LOGGING logging_obj.pre_call( input=None, api_key=None, additional_args={ "api_base": url, "complete_input_dict": data, "headers": {}, "acompletion": acompletion, }, ) if acompletion is True: if stream == True: response = ollama_async_streaming( url=url, data=data, model_response=model_response, encoding=encoding, logging_obj=logging_obj, ) else: response = ollama_acompletion( url=url, data=data, model_response=model_response, encoding=encoding, logging_obj=logging_obj, ) return response elif stream == True: return ollama_completion_stream(url=url, data=data, logging_obj=logging_obj) response = requests.post( url=f"{url}", json={**data, "stream": stream}, timeout=litellm.request_timeout ) if response.status_code != 200: raise OllamaError(status_code=response.status_code, message=response.text) ## LOGGING logging_obj.post_call( input=prompt, api_key="", original_response=response.text, additional_args={ "headers": None, "api_base": api_base, }, ) response_json = response.json() ## RESPONSE OBJECT model_response["choices"][0]["finish_reason"] = "stop" if data.get("format", "") == "json": function_call = json.loads(response_json["response"]) message = litellm.Message( content=None, tool_calls=[ { "id": f"call_{str(uuid.uuid4())}", "function": { "name": function_call["name"], "arguments": json.dumps(function_call["arguments"]), }, "type": "function", } ], ) model_response["choices"][0]["message"] = message model_response["choices"][0]["finish_reason"] = "tool_calls" else: model_response["choices"][0]["message"]["content"] = response_json["response"] model_response["created"] = int(time.time()) model_response["model"] = "ollama/" + model prompt_tokens = response_json.get("prompt_eval_count", len(encoding.encode(prompt, disallowed_special=()))) # type: ignore completion_tokens = response_json.get( "eval_count", len(response_json.get("message", dict()).get("content", "")) ) model_response["usage"] = litellm.Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, ) return model_response def ollama_completion_stream(url, data, logging_obj): with httpx.stream( url=url, json=data, method="POST", timeout=litellm.request_timeout ) as response: try: if response.status_code != 200: raise OllamaError( status_code=response.status_code, message=response.text ) streamwrapper = litellm.CustomStreamWrapper( completion_stream=response.iter_lines(), model=data["model"], custom_llm_provider="ollama", logging_obj=logging_obj, ) # If format is JSON, this was a function call # Gather all chunks and return the function call as one delta to simplify parsing if data.get("format", "") == "json": first_chunk = next(streamwrapper) response_content = "".join( chunk.choices[0].delta.content for chunk in chain([first_chunk], streamwrapper) if chunk.choices[0].delta.content ) function_call = json.loads(response_content) delta = litellm.utils.Delta( content=None, tool_calls=[ { "id": f"call_{str(uuid.uuid4())}", "function": { "name": function_call["name"], "arguments": json.dumps(function_call["arguments"]), }, "type": "function", } ], ) model_response = first_chunk model_response["choices"][0]["delta"] = delta model_response["choices"][0]["finish_reason"] = "tool_calls" yield model_response else: for transformed_chunk in streamwrapper: yield transformed_chunk except Exception as e: raise e async def ollama_async_streaming(url, data, model_response, encoding, logging_obj): try: client = httpx.AsyncClient() async with client.stream( url=f"{url}", json=data, method="POST", timeout=litellm.request_timeout ) as response: if response.status_code != 200: raise OllamaError( status_code=response.status_code, message=await response.aread() ) streamwrapper = litellm.CustomStreamWrapper( completion_stream=response.aiter_lines(), model=data["model"], custom_llm_provider="ollama", logging_obj=logging_obj, ) # If format is JSON, this was a function call # Gather all chunks and return the function call as one delta to simplify parsing if data.get("format", "") == "json": first_chunk = await anext(streamwrapper) first_chunk_content = first_chunk.choices[0].delta.content or "" response_content = first_chunk_content + "".join( [ chunk.choices[0].delta.content async for chunk in streamwrapper if chunk.choices[0].delta.content ] ) function_call = json.loads(response_content) delta = litellm.utils.Delta( content=None, tool_calls=[ { "id": f"call_{str(uuid.uuid4())}", "function": { "name": function_call["name"], "arguments": json.dumps(function_call["arguments"]), }, "type": "function", } ], ) model_response = first_chunk model_response["choices"][0]["delta"] = delta model_response["choices"][0]["finish_reason"] = "tool_calls" yield model_response else: async for transformed_chunk in streamwrapper: yield transformed_chunk except Exception as e: traceback.print_exc() raise e async def ollama_acompletion(url, data, model_response, encoding, logging_obj): data["stream"] = False try: timeout = aiohttp.ClientTimeout(total=litellm.request_timeout) # 10 minutes async with aiohttp.ClientSession(timeout=timeout) as session: resp = await session.post(url, json=data) if resp.status != 200: text = await resp.text() raise OllamaError(status_code=resp.status, message=text) ## LOGGING logging_obj.post_call( input=data["prompt"], api_key="", original_response=resp.text, additional_args={ "headers": None, "api_base": url, }, ) response_json = await resp.json() ## RESPONSE OBJECT model_response["choices"][0]["finish_reason"] = "stop" if data.get("format", "") == "json": function_call = json.loads(response_json["response"]) message = litellm.Message( content=None, tool_calls=[ { "id": f"call_{str(uuid.uuid4())}", "function": { "name": function_call["name"], "arguments": json.dumps(function_call["arguments"]), }, "type": "function", } ], ) model_response["choices"][0]["message"] = message model_response["choices"][0]["finish_reason"] = "tool_calls" else: model_response["choices"][0]["message"]["content"] = response_json[ "response" ] model_response["created"] = int(time.time()) model_response["model"] = "ollama/" + data["model"] prompt_tokens = response_json.get("prompt_eval_count", len(encoding.encode(data["prompt"], disallowed_special=()))) # type: ignore completion_tokens = response_json.get( "eval_count", len(response_json.get("message", dict()).get("content", "")), ) model_response["usage"] = litellm.Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, ) return model_response except Exception as e: traceback.print_exc() raise e async def ollama_aembeddings( api_base: str, model: str, prompts: list, optional_params=None, logging_obj=None, model_response=None, encoding=None, ): if api_base.endswith("/api/embeddings"): url = api_base else: url = f"{api_base}/api/embeddings" ## Load Config config = litellm.OllamaConfig.get_config() for k, v in config.items(): if ( k not in optional_params ): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in optional_params[k] = v total_input_tokens = 0 output_data = [] timeout = aiohttp.ClientTimeout(total=litellm.request_timeout) # 10 minutes async with aiohttp.ClientSession(timeout=timeout) as session: for idx, prompt in enumerate(prompts): data = { "model": model, "prompt": prompt, } ## LOGGING logging_obj.pre_call( input=None, api_key=None, additional_args={ "api_base": url, "complete_input_dict": data, "headers": {}, }, ) response = await session.post(url, json=data) if response.status != 200: text = await response.text() raise OllamaError(status_code=response.status, message=text) ## LOGGING logging_obj.post_call( input=prompt, api_key="", original_response=response.text, additional_args={ "headers": None, "api_base": api_base, }, ) response_json = await response.json() embeddings: list[float] = response_json["embedding"] output_data.append( {"object": "embedding", "index": idx, "embedding": embeddings} ) input_tokens = len(encoding.encode(prompt)) total_input_tokens += input_tokens model_response["object"] = "list" model_response["data"] = output_data model_response["model"] = model model_response["usage"] = { "prompt_tokens": total_input_tokens, "total_tokens": total_input_tokens, } return model_response def ollama_embeddings( api_base: str, model: str, prompts: list, optional_params=None, logging_obj=None, model_response=None, encoding=None, ): return asyncio.run( ollama_aembeddings( api_base, model, prompts, optional_params, logging_obj, model_response, encoding, ) )