import vertexai from google.auth.credentials import Credentials from vertexai.vision_models import ( Image, MultiModalEmbeddingModel, Video, VideoSegmentConfig, ) LITELLM_PROXY_API_KEY = "sk-1234" LITELLM_PROXY_BASE = "http://0.0.0.0:4000/vertex-ai" import datetime class CredentialsWrapper(Credentials): def __init__(self, token=None): super().__init__() self.token = token self.expiry = None # or set to a future date if needed def refresh(self, request): pass def apply(self, headers, token=None): headers["Authorization"] = f"Bearer {self.token}" @property def expired(self): return False # Always consider the token as non-expired @property def valid(self): return True # Always consider the credentials as valid credentials = CredentialsWrapper(token=LITELLM_PROXY_API_KEY) vertexai.init( project="adroit-crow-413218", location="us-central1", api_endpoint=LITELLM_PROXY_BASE, credentials=credentials, api_transport="rest", ) model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding") image = Image.load_from_file( "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png" ) embeddings = model.get_embeddings( image=image, contextual_text="Colosseum", dimension=1408, ) print(f"Image Embedding: {embeddings.image_embedding}") print(f"Text Embedding: {embeddings.text_embedding}")