import os import json from enum import Enum import requests import time from typing import Callable from litellm.utils import ModelResponse from .prompt_templates.factory import prompt_factory, custom_prompt class TogetherAIError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message super().__init__( self.message ) # Call the base class constructor with the parameters it needs def validate_environment(api_key): if api_key is None: raise ValueError( "Missing TogetherAI API Key - A call is being made to together_ai but no key is set either in the environment variables or via params" ) headers = { "accept": "application/json", "content-type": "application/json", "Authorization": "Bearer " + api_key, } return headers def completion( model: str, messages: list, model_response: ModelResponse, print_verbose: Callable, encoding, api_key, logging_obj, custom_prompt_dict={}, optional_params=None, litellm_params=None, logger_fn=None, ): headers = validate_environment(api_key) model = model if model in custom_prompt_dict: # check if the model has a registered custom prompt model_prompt_details = custom_prompt_dict[model] prompt = custom_prompt(role_dict=model_prompt_details["roles"], pre_message_sep=model_prompt_details["pre_message_sep"], post_message_sep=model_prompt_details["post_message_sep"], messages=messages) else: prompt = prompt_factory(model=model, messages=messages) data = { "model": model, "prompt": prompt, "request_type": "language-model-inference", **optional_params, } ## LOGGING logging_obj.pre_call( input=prompt, api_key=api_key, additional_args={"complete_input_dict": data}, ) ## COMPLETION CALL if ( "stream_tokens" in optional_params and optional_params["stream_tokens"] == True ): response = requests.post( "https://api.together.xyz/inference", headers=headers, data=json.dumps(data), stream=optional_params["stream_tokens"], ) return response.iter_lines() else: response = requests.post( "https://api.together.xyz/inference", headers=headers, data=json.dumps(data) ) ## LOGGING logging_obj.post_call( input=prompt, api_key=api_key, original_response=response.text, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response.text}") ## RESPONSE OBJECT completion_response = response.json() if "error" in completion_response: raise TogetherAIError( message=json.dumps(completion_response), status_code=response.status_code, ) elif "error" in completion_response["output"]: raise TogetherAIError( message=json.dumps(completion_response["output"]), status_code=response.status_code ) completion_response = completion_response["output"]["choices"][0]["text"] ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here. prompt_tokens = len(encoding.encode(prompt)) completion_tokens = len( encoding.encode(completion_response) ) model_response["choices"][0]["message"]["content"] = completion_response model_response["created"] = time.time() model_response["model"] = model model_response["usage"] = { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens, } return model_response def embedding(): # logic for parsing in - calling - parsing out model embedding calls pass