import json from copy import deepcopy from typing import Any, Callable, List, Optional, Union import httpx import litellm from litellm._logging import verbose_logger from litellm.litellm_core_utils.asyncify import asyncify from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM from litellm.llms.custom_httpx.http_handler import ( _get_httpx_client, get_async_httpx_client, ) from litellm.types.llms.openai import AllMessageValues from litellm.utils import ( CustomStreamWrapper, EmbeddingResponse, ModelResponse, Usage, get_secret, ) from ..common_utils import AWSEventStreamDecoder, SagemakerError from .transformation import SagemakerConfig sagemaker_config = SagemakerConfig() """ SAGEMAKER AUTH Keys/Vars os.environ['AWS_ACCESS_KEY_ID'] = "" os.environ['AWS_SECRET_ACCESS_KEY'] = "" """ # set os.environ['AWS_REGION_NAME'] = class SagemakerLLM(BaseAWSLLM): def _load_credentials( self, optional_params: dict, ): try: from botocore.credentials import Credentials except ImportError: raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") ## CREDENTIALS ## # pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) aws_access_key_id = optional_params.pop("aws_access_key_id", None) aws_session_token = optional_params.pop("aws_session_token", None) aws_region_name = optional_params.pop("aws_region_name", None) aws_role_name = optional_params.pop("aws_role_name", None) aws_session_name = optional_params.pop("aws_session_name", None) aws_profile_name = optional_params.pop("aws_profile_name", None) optional_params.pop( "aws_bedrock_runtime_endpoint", None ) # https://bedrock-runtime.{region_name}.amazonaws.com aws_web_identity_token = optional_params.pop("aws_web_identity_token", None) aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None) ### SET REGION NAME ### if aws_region_name is None: # check env # litellm_aws_region_name = get_secret("AWS_REGION_NAME", None) if litellm_aws_region_name is not None and isinstance( litellm_aws_region_name, str ): aws_region_name = litellm_aws_region_name standard_aws_region_name = get_secret("AWS_REGION", None) if standard_aws_region_name is not None and isinstance( standard_aws_region_name, str ): aws_region_name = standard_aws_region_name if aws_region_name is None: aws_region_name = "us-west-2" credentials: Credentials = self.get_credentials( aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, aws_session_token=aws_session_token, aws_region_name=aws_region_name, aws_session_name=aws_session_name, aws_profile_name=aws_profile_name, aws_role_name=aws_role_name, aws_web_identity_token=aws_web_identity_token, aws_sts_endpoint=aws_sts_endpoint, ) return credentials, aws_region_name def _prepare_request( self, credentials, model: str, data: dict, messages: List[AllMessageValues], optional_params: dict, aws_region_name: str, extra_headers: Optional[dict] = None, ): try: from botocore.auth import SigV4Auth from botocore.awsrequest import AWSRequest except ImportError: raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name) if optional_params.get("stream") is True: api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream" else: api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations" sagemaker_base_url = optional_params.get("sagemaker_base_url", None) if sagemaker_base_url is not None: api_base = sagemaker_base_url encoded_data = json.dumps(data).encode("utf-8") headers = sagemaker_config.validate_environment( headers=extra_headers, model=model, messages=messages, optional_params=optional_params, ) request = AWSRequest( method="POST", url=api_base, data=encoded_data, headers=headers ) sigv4.add_auth(request) if ( extra_headers is not None and "Authorization" in extra_headers ): # prevent sigv4 from overwriting the auth header request.headers["Authorization"] = extra_headers["Authorization"] prepped_request = request.prepare() return prepped_request def completion( # noqa: PLR0915 self, model: str, messages: list, model_response: ModelResponse, print_verbose: Callable, encoding, logging_obj, optional_params: dict, litellm_params: dict, timeout: Optional[Union[float, httpx.Timeout]] = None, custom_prompt_dict={}, hf_model_name=None, logger_fn=None, acompletion: bool = False, headers: dict = {}, ): # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker credentials, aws_region_name = self._load_credentials(optional_params) inference_params = deepcopy(optional_params) stream = inference_params.pop("stream", None) model_id = optional_params.get("model_id", None) ## Load Config config = litellm.SagemakerConfig.get_config() for k, v in config.items(): if ( k not in inference_params ): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in inference_params[k] = v if stream is True: if acompletion is True: response = self.async_streaming( messages=messages, model=model, custom_prompt_dict=custom_prompt_dict, hf_model_name=hf_model_name, optional_params=optional_params, encoding=encoding, model_response=model_response, logging_obj=logging_obj, model_id=model_id, aws_region_name=aws_region_name, credentials=credentials, headers=headers, litellm_params=litellm_params, ) return response else: data = sagemaker_config.transform_request( model=model, messages=messages, optional_params=optional_params, litellm_params=litellm_params, headers=headers, ) prepared_request = self._prepare_request( model=model, data=data, messages=messages, optional_params=optional_params, credentials=credentials, aws_region_name=aws_region_name, ) if model_id is not None: # Add model_id as InferenceComponentName header # boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html prepared_request.headers.update( {"X-Amzn-SageMaker-Inference-Component": model_id} ) sync_handler = _get_httpx_client() sync_response = sync_handler.post( url=prepared_request.url, headers=prepared_request.headers, # type: ignore json=data, stream=stream, ) if sync_response.status_code != 200: raise SagemakerError( status_code=sync_response.status_code, message=str(sync_response.read()), ) decoder = AWSEventStreamDecoder(model="") completion_stream = decoder.iter_bytes( sync_response.iter_bytes(chunk_size=1024) ) streaming_response = CustomStreamWrapper( completion_stream=completion_stream, model=model, custom_llm_provider="sagemaker", logging_obj=logging_obj, ) ## LOGGING logging_obj.post_call( input=messages, api_key="", original_response=streaming_response, additional_args={"complete_input_dict": data}, ) return streaming_response # Non-Streaming Requests # Async completion if acompletion is True: return self.async_completion( messages=messages, model=model, custom_prompt_dict=custom_prompt_dict, hf_model_name=hf_model_name, model_response=model_response, encoding=encoding, logging_obj=logging_obj, model_id=model_id, optional_params=optional_params, credentials=credentials, aws_region_name=aws_region_name, headers=headers, litellm_params=litellm_params, ) ## Non-Streaming completion CALL _data = sagemaker_config.transform_request( model=model, messages=messages, optional_params=optional_params, litellm_params=litellm_params, headers=headers, ) prepared_request_args = { "model": model, "data": _data, "optional_params": optional_params, "credentials": credentials, "aws_region_name": aws_region_name, "messages": messages, } prepared_request = self._prepare_request(**prepared_request_args) try: if model_id is not None: # Add model_id as InferenceComponentName header # boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html prepared_request.headers.update( {"X-Amzn-SageMaker-Inference-Component": model_id} ) ## LOGGING timeout = 300.0 sync_handler = _get_httpx_client() ## LOGGING logging_obj.pre_call( input=[], api_key="", additional_args={ "complete_input_dict": _data, "api_base": prepared_request.url, "headers": prepared_request.headers, }, ) # make sync httpx post request here try: sync_response = sync_handler.post( url=prepared_request.url, headers=prepared_request.headers, # type: ignore json=_data, timeout=timeout, ) if sync_response.status_code != 200: raise SagemakerError( status_code=sync_response.status_code, message=sync_response.text, ) except Exception as e: ## LOGGING logging_obj.post_call( input=[], api_key="", original_response=str(e), additional_args={"complete_input_dict": _data}, ) raise e except Exception as e: verbose_logger.error("Sagemaker error %s", str(e)) status_code = ( getattr(e, "response", {}) .get("ResponseMetadata", {}) .get("HTTPStatusCode", 500) ) error_message = ( getattr(e, "response", {}).get("Error", {}).get("Message", str(e)) ) if "Inference Component Name header is required" in error_message: error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`" raise SagemakerError(status_code=status_code, message=error_message) return sagemaker_config.transform_response( model=model, raw_response=sync_response, model_response=model_response, logging_obj=logging_obj, request_data=_data, messages=messages, optional_params=optional_params, encoding=encoding, litellm_params=litellm_params, ) async def make_async_call( self, api_base: str, headers: dict, data: dict, logging_obj, client=None, ): try: if client is None: client = get_async_httpx_client( llm_provider=litellm.LlmProviders.SAGEMAKER ) # Create a new client if none provided response = await client.post( api_base, headers=headers, json=data, stream=True, ) if response.status_code != 200: raise SagemakerError( status_code=response.status_code, message=response.text ) decoder = AWSEventStreamDecoder(model="") completion_stream = decoder.aiter_bytes( response.aiter_bytes(chunk_size=1024) ) return completion_stream # LOGGING logging_obj.post_call( input=[], api_key="", original_response="first stream response received", additional_args={"complete_input_dict": data}, ) except httpx.HTTPStatusError as err: error_code = err.response.status_code raise SagemakerError(status_code=error_code, message=err.response.text) except httpx.TimeoutException: raise SagemakerError(status_code=408, message="Timeout error occurred.") except Exception as e: raise SagemakerError(status_code=500, message=str(e)) async def async_streaming( self, messages: List[AllMessageValues], model: str, custom_prompt_dict: dict, hf_model_name: Optional[str], credentials, aws_region_name: str, optional_params, encoding, model_response: ModelResponse, model_id: Optional[str], logging_obj: Any, litellm_params: dict, headers: dict, ): data = await sagemaker_config.async_transform_request( model=model, messages=messages, optional_params={**optional_params, "stream": True}, litellm_params=litellm_params, headers=headers, ) asyncified_prepare_request = asyncify(self._prepare_request) prepared_request_args = { "model": model, "data": data, "optional_params": optional_params, "credentials": credentials, "aws_region_name": aws_region_name, "messages": messages, } prepared_request = await asyncified_prepare_request(**prepared_request_args) if model_id is not None: # Fixes https://github.com/BerriAI/litellm/issues/8889 prepared_request.headers.update( {"X-Amzn-SageMaker-Inference-Component": model_id} ) completion_stream = await self.make_async_call( api_base=prepared_request.url, headers=prepared_request.headers, # type: ignore data=data, logging_obj=logging_obj, ) streaming_response = CustomStreamWrapper( completion_stream=completion_stream, model=model, custom_llm_provider="sagemaker", logging_obj=logging_obj, ) # LOGGING logging_obj.post_call( input=[], api_key="", original_response="first stream response received", additional_args={"complete_input_dict": data}, ) return streaming_response async def async_completion( self, messages: List[AllMessageValues], model: str, custom_prompt_dict: dict, hf_model_name: Optional[str], credentials, aws_region_name: str, encoding, model_response: ModelResponse, optional_params: dict, logging_obj: Any, model_id: Optional[str], headers: dict, litellm_params: dict, ): timeout = 300.0 async_handler = get_async_httpx_client( llm_provider=litellm.LlmProviders.SAGEMAKER ) data = await sagemaker_config.async_transform_request( model=model, messages=messages, optional_params=optional_params, litellm_params=litellm_params, headers=headers, ) asyncified_prepare_request = asyncify(self._prepare_request) prepared_request_args = { "model": model, "data": data, "optional_params": optional_params, "credentials": credentials, "aws_region_name": aws_region_name, "messages": messages, } prepared_request = await asyncified_prepare_request(**prepared_request_args) ## LOGGING logging_obj.pre_call( input=[], api_key="", additional_args={ "complete_input_dict": data, "api_base": prepared_request.url, "headers": prepared_request.headers, }, ) try: if model_id is not None: # Add model_id as InferenceComponentName header # boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html prepared_request.headers.update( {"X-Amzn-SageMaker-Inference-Component": model_id} ) # make async httpx post request here try: response = await async_handler.post( url=prepared_request.url, headers=prepared_request.headers, # type: ignore json=data, timeout=timeout, ) if response.status_code != 200: raise SagemakerError( status_code=response.status_code, message=response.text ) except Exception as e: ## LOGGING logging_obj.post_call( input=data["inputs"], api_key="", original_response=str(e), additional_args={"complete_input_dict": data}, ) raise e except Exception as e: error_message = f"{str(e)}" if "Inference Component Name header is required" in error_message: error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`" raise SagemakerError(status_code=500, message=error_message) return sagemaker_config.transform_response( model=model, raw_response=response, model_response=model_response, logging_obj=logging_obj, request_data=data, messages=messages, optional_params=optional_params, encoding=encoding, litellm_params=litellm_params, ) def embedding( self, model: str, input: list, model_response: EmbeddingResponse, print_verbose: Callable, encoding, logging_obj, optional_params: dict, custom_prompt_dict={}, litellm_params=None, logger_fn=None, ): """ Supports Huggingface Jumpstart embeddings like GPT-6B """ ### BOTO3 INIT import boto3 # pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) aws_access_key_id = optional_params.pop("aws_access_key_id", None) aws_region_name = optional_params.pop("aws_region_name", None) if aws_access_key_id is not None: # uses auth params passed to completion # aws_access_key_id is not None, assume user is trying to auth using litellm.completion client = boto3.client( service_name="sagemaker-runtime", aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=aws_region_name, ) else: # aws_access_key_id is None, assume user is trying to auth using env variables # boto3 automaticaly reads env variables # we need to read region name from env # I assume majority of users use .env for auth region_name = ( get_secret("AWS_REGION_NAME") or aws_region_name # get region from config file if specified or "us-west-2" # default to us-west-2 if region not specified ) client = boto3.client( service_name="sagemaker-runtime", region_name=region_name, ) # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker inference_params = deepcopy(optional_params) inference_params.pop("stream", None) ## Load Config config = litellm.SagemakerConfig.get_config() for k, v in config.items(): if ( k not in inference_params ): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in inference_params[k] = v #### HF EMBEDDING LOGIC data = json.dumps({"text_inputs": input}).encode("utf-8") ## LOGGING request_str = f""" response = client.invoke_endpoint( EndpointName={model}, ContentType="application/json", Body={data}, # type: ignore CustomAttributes="accept_eula=true", )""" # type: ignore logging_obj.pre_call( input=input, api_key="", additional_args={"complete_input_dict": data, "request_str": request_str}, ) ## EMBEDDING CALL try: response = client.invoke_endpoint( EndpointName=model, ContentType="application/json", Body=data, CustomAttributes="accept_eula=true", ) except Exception as e: status_code = ( getattr(e, "response", {}) .get("ResponseMetadata", {}) .get("HTTPStatusCode", 500) ) error_message = ( getattr(e, "response", {}).get("Error", {}).get("Message", str(e)) ) raise SagemakerError(status_code=status_code, message=error_message) response = json.loads(response["Body"].read().decode("utf8")) ## LOGGING logging_obj.post_call( input=input, api_key="", original_response=response, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response}") if "embedding" not in response: raise SagemakerError( status_code=500, message="embedding not found in response" ) embeddings = response["embedding"] if not isinstance(embeddings, list): raise SagemakerError( status_code=422, message=f"Response not in expected format - {embeddings}", ) output_data = [] for idx, embedding in enumerate(embeddings): output_data.append( {"object": "embedding", "index": idx, "embedding": embedding} ) model_response.object = "list" model_response.data = output_data model_response.model = model input_tokens = 0 for text in input: input_tokens += len(encoding.encode(text)) setattr( model_response, "usage", Usage( prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens, ), ) return model_response