import sys, os import traceback from dotenv import load_dotenv load_dotenv() import os sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path import pytest import litellm from litellm import embedding, completion from litellm.caching import Cache # litellm.set_verbose=True messages = [{"role": "user", "content": "who is ishaan Github? "}] # comment # test if response cached def test_caching(): try: litellm.caching = True response1 = completion(model="gpt-3.5-turbo", messages=messages) response2 = completion(model="gpt-3.5-turbo", messages=messages) print(f"response1: {response1}") print(f"response2: {response2}") litellm.caching = False if response2 != response1: print(f"response1: {response1}") print(f"response2: {response2}") pytest.fail(f"Error occurred: responses are not equal") except Exception as e: litellm.caching = False pytest.fail(f"Error occurred: {e}") def test_caching_with_models(): litellm.caching_with_models = True response1 = completion(model="gpt-3.5-turbo", messages=messages) response2 = completion(model="gpt-3.5-turbo", messages=messages) response3 = completion(model="command-nightly", messages=messages) print(f"response2: {response2}") print(f"response3: {response3}") litellm.caching_with_models = False if response3 == response2: # if models are different, it should not return cached response print(f"response2: {response2}") print(f"response3: {response3}") pytest.fail(f"Error occurred:") if response1 != response2: print(f"response1: {response1}") print(f"response2: {response2}") pytest.fail(f"Error occurred:") # test_caching_with_models() def test_gpt_cache(): # INIT GPT Cache # from gptcache import cache import gptcache from gptcache.processor.pre import last_content_without_prompt from litellm.gpt_cache import completion from typing import Dict, Any def pre_cache_func(data: Dict[str, Any], **params: Dict[str, Any]) -> Any: # use this to set cache key print("in do nothing") last_content_without_prompt_val = last_content_without_prompt(data, **params) print("last content without prompt", last_content_without_prompt_val) print("model", data["model"]) cache_key = last_content_without_prompt_val + data["model"] print("cache_key", cache_key) return cache_key cache.init(pre_func=pre_cache_func) cache.set_openai_key() messages = [{"role": "user", "content": "why should I use LiteLLM today"}] response1 = completion(model="gpt-3.5-turbo", messages=messages) response2 = completion(model="gpt-3.5-turbo", messages=messages) response3 = completion(model="command-nightly", messages=messages) if response1["choices"] != response2["choices"]: # same models should cache print(f"response1: {response1}") print(f"response2: {response2}") pytest.fail(f"Error occurred:") if response3["choices"] == response2["choices"]: # different models, don't cache # if models are different, it should not return cached response print(f"response2: {response2}") print(f"response3: {response3}") pytest.fail(f"Error occurred:") # test_gpt_cache() ####### Updated Caching as of Aug 28, 2023 ################### messages = [{"role": "user", "content": "who is ishaan 5222"}] def test_caching_v2(): try: litellm.cache = Cache() response1 = completion(model="gpt-3.5-turbo", messages=messages) response2 = completion(model="gpt-3.5-turbo", messages=messages) print(f"response1: {response1}") print(f"response2: {response2}") litellm.cache = None # disable cache if response2 != response1: print(f"response1: {response1}") print(f"response2: {response2}") pytest.fail(f"Error occurred: {e}") except Exception as e: print(f"error occurred: {traceback.format_exc()}") pytest.fail(f"Error occurred: {e}") # test_caching() def test_caching_with_models_v2(): messages = [{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}] litellm.cache = Cache() print("test2 for caching") response1 = completion(model="gpt-3.5-turbo", messages=messages) response2 = completion(model="gpt-3.5-turbo", messages=messages) response3 = completion(model="command-nightly", messages=messages) print(f"response1: {response1}") print(f"response2: {response2}") print(f"response3: {response3}") litellm.cache = None if response3 == response2: # if models are different, it should not return cached response print(f"response2: {response2}") print(f"response3: {response3}") pytest.fail(f"Error occurred:") if response1 != response2: print(f"response1: {response1}") print(f"response2: {response2}") pytest.fail(f"Error occurred:") embedding_large_text = """ small text """ * 5 # # test_caching_with_models() def test_embedding_caching(): import time litellm.cache = Cache() text_to_embed = [embedding_large_text] start_time = time.time() embedding1 = embedding(model="text-embedding-ada-002", input=text_to_embed) end_time = time.time() print(f"Embedding 1 response time: {end_time - start_time} seconds") time.sleep(1) start_time = time.time() embedding2 = embedding(model="text-embedding-ada-002", input=text_to_embed) end_time = time.time() print(f"Embedding 2 response time: {end_time - start_time} seconds") litellm.cache = None if embedding2 != embedding1: print(f"embedding1: {embedding1}") print(f"embedding2: {embedding2}") pytest.fail("Error occurred: Embedding caching failed") # test_embedding_caching() # test caching with streaming def test_caching_v2_stream_basic(): try: litellm.cache = Cache() # litellm.token="ishaan@berri.ai" messages = [{"role": "user", "content": "tell me a story in 2 sentences"}] response1 = completion(model="gpt-3.5-turbo", messages=messages, stream=True) result_string = "" for chunk in response1: print(chunk) result_string+=chunk['choices'][0]['delta']['content'] # response1_id = chunk['id'] print("current cache") print(litellm.cache.cache.cache_dict) result2_string="" import time time.sleep(1) response2 = completion(model="gpt-3.5-turbo", messages=messages, stream=True) for chunk in response2: print(chunk) result2_string+=chunk['choices'][0]['delta']['content'] if result_string != result2_string: print(result_string) print(result2_string) pytest.fail(f"Error occurred: Caching with streaming failed, strings diff") litellm.cache = None except Exception as e: print(f"error occurred: {traceback.format_exc()}") pytest.fail(f"Error occurred: {e}") # test_caching_v2_stream_basic() def test_caching_v2_stream(): try: litellm.cache = Cache() # litellm.token="ishaan@berri.ai" messages = [{"role": "user", "content": "tell me a story in 2 sentences"}] response1 = completion(model="gpt-3.5-turbo", messages=messages, stream=True) messages = [{"role": "user", "content": "tell me a chair"}] response7 = completion(model="command-nightly", messages=messages) messages = [{"role": "user", "content": "sing a song"}] response8 = completion(model="gpt-3.5-turbo", messages=messages, stream=True) result_string = "" for chunk in response1: print(chunk) result_string+=chunk['choices'][0]['delta']['content'] # response1_id = chunk['id'] print("current cache") messages = [{"role": "user", "content": "tell me a story in 2 sentences"}] print(litellm.cache.cache.cache_dict) result2_string="" response2 = completion(model="gpt-3.5-turbo", messages=messages, stream=True) for chunk in response2: print(chunk) result2_string+=chunk['choices'][0]['delta']['content'] if result_string != result2_string: print(result_string) print(result2_string) pytest.fail(f"Error occurred: Caching with streaming failed, strings diff") litellm.cache = None except Exception as e: print(f"error occurred: {traceback.format_exc()}") pytest.fail(f"Error occurred: {e}") # test_caching_v2_stream() def test_redis_cache_completion(): messages = [{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}] litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD']) print("test2 for caching") response1 = completion(model="gpt-3.5-turbo", messages=messages) response2 = completion(model="gpt-3.5-turbo", messages=messages) response3 = completion(model="command-nightly", messages=messages) print(f"response1: {response1}") print(f"response2: {response2}") print(f"response3: {response3}") litellm.cache = None if response3 == response2: # if models are different, it should not return cached response print(f"response2: {response2}") print(f"response3: {response3}") pytest.fail(f"Error occurred:") if response1 != response2: # 1 and 2 should be the same print(f"response1: {response1}") print(f"response2: {response2}") pytest.fail(f"Error occurred:") # test_redis_cache_completion()