import os import json from enum import Enum import requests import time from typing import Callable from litellm.utils import ModelResponse class NLPCloudError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message super().__init__( self.message ) # Call the base class constructor with the parameters it needs def validate_environment(api_key): headers = { "accept": "application/json", "content-type": "application/json", } if api_key: headers["Authorization"] = f"Token {api_key}" return headers def completion( model: str, messages: list, model_response: ModelResponse, print_verbose: Callable, encoding, api_key, logging_obj, optional_params=None, litellm_params=None, logger_fn=None, default_max_tokens_to_sample=None, ): headers = validate_environment(api_key) completion_url_fragment_1 = "https://api.nlpcloud.io/v1/gpu/" completion_url_fragment_2 = "/generation" model = model text = " ".join(message["content"] for message in messages) data = { "text": text, **optional_params, } completion_url = completion_url_fragment_1 + model + completion_url_fragment_2 ## LOGGING logging_obj.pre_call( input=text, api_key=api_key, additional_args={"complete_input_dict": data}, ) ## COMPLETION CALL response = requests.post( completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False ) if "stream" in optional_params and optional_params["stream"] == True: return response.iter_lines() else: ## LOGGING logging_obj.post_call( input=text, api_key=api_key, original_response=response.text, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response.text}") ## RESPONSE OBJECT try: completion_response = response.json() except: raise NLPCloudError(message=response.text, status_code=response.status_code) if "error" in completion_response: raise NLPCloudError( message=completion_response["error"], status_code=response.status_code, ) else: try: model_response["choices"][0]["message"]["content"] = completion_response["generated_text"] except: raise NLPCloudError(message=json.dumps(completion_response), status_code=response.status_code) ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here. prompt_tokens = completion_response["nb_input_tokens"] completion_tokens = completion_response["nb_generated_tokens"] model_response["created"] = time.time() model_response["model"] = model model_response["usage"] = { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens, } return model_response def embedding(): # logic for parsing in - calling - parsing out model embedding calls pass