import os import json from enum import Enum import requests import time from typing import Callable from litellm.utils import ModelResponse class AnthropicConstants(Enum): HUMAN_PROMPT = "\n\nHuman:" AI_PROMPT = "\n\nAssistant:" class AnthropicError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message super().__init__( self.message ) # Call the base class constructor with the parameters it needs # makes headers for API call def validate_environment(api_key): if api_key is None: raise ValueError( "Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params" ) headers = { "accept": "application/json", "anthropic-version": "2023-06-01", "content-type": "application/json", "x-api-key": api_key, } return headers def completion( model: str, messages: list, model_response: ModelResponse, print_verbose: Callable, encoding, api_key, logging_obj, optional_params=None, litellm_params=None, logger_fn=None, ): headers = validate_environment(api_key) prompt = f"{AnthropicConstants.HUMAN_PROMPT.value}" for message in messages: if "role" in message: if message["role"] == "user": prompt += ( f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}" ) else: prompt += ( f"{AnthropicConstants.AI_PROMPT.value}{message['content']}" ) else: prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}" prompt += f"{AnthropicConstants.AI_PROMPT.value}" max_tokens_to_sample = optional_params.get("max_tokens_to_sample", 256) # required anthropic param, default to 256 if user does not provide an input data = { "model": model, "prompt": prompt, "max_tokens_to_sample": max_tokens_to_sample, **optional_params, } ## LOGGING logging_obj.pre_call( input=prompt, api_key=api_key, additional_args={"complete_input_dict": data}, ) ## COMPLETION CALL if "stream" in optional_params and optional_params["stream"] == True: response = requests.post( "https://api.anthropic.com/v1/complete", headers=headers, data=json.dumps(data), stream=optional_params["stream"], ) return response.iter_lines() else: response = requests.post( "https://api.anthropic.com/v1/complete", headers=headers, data=json.dumps(data) ) ## LOGGING logging_obj.post_call( input=prompt, api_key=api_key, original_response=response.text, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response.text}") ## RESPONSE OBJECT try: completion_response = response.json() except: raise AnthropicError( message=response.text, status_code=response.status_code ) if "error" in completion_response: raise AnthropicError( message=str(completion_response["error"]), status_code=response.status_code, ) else: model_response["choices"][0]["message"]["content"] = completion_response[ "completion" ] model_response.choices[0].finish_reason = completion_response["stop_reason"] ## CALCULATING USAGE prompt_tokens = len( encoding.encode(prompt) ) ##[TODO] use the anthropic tokenizer here completion_tokens = len( encoding.encode(model_response["choices"][0]["message"]["content"]) ) ##[TODO] use the anthropic tokenizer here model_response["created"] = time.time() model_response["model"] = model model_response["usage"] = { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens, } return model_response def embedding(): # logic for parsing in - calling - parsing out model embedding calls pass