import os, types, traceback from enum import Enum import json import requests import time from typing import Callable, Optional, Any import litellm from litellm.utils import ModelResponse, EmbeddingResponse, get_secret, Usage import sys from copy import deepcopy import httpx from .prompt_templates.factory import prompt_factory, custom_prompt class SagemakerError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message self.request = httpx.Request( method="POST", url="https://us-west-2.console.aws.amazon.com/sagemaker" ) self.response = httpx.Response(status_code=status_code, request=self.request) super().__init__( self.message ) # Call the base class constructor with the parameters it needs import io import json class TokenIterator: def __init__(self, stream, acompletion: bool = False): if acompletion == False: self.byte_iterator = iter(stream) elif acompletion == True: self.byte_iterator = stream self.buffer = io.BytesIO() self.read_pos = 0 self.end_of_data = False def __iter__(self): return self def __next__(self): try: while True: self.buffer.seek(self.read_pos) line = self.buffer.readline() if line and line[-1] == ord("\n"): response_obj = {"text": "", "is_finished": False} self.read_pos += len(line) + 1 full_line = line[:-1].decode("utf-8") line_data = json.loads(full_line.lstrip("data:").rstrip("/n")) if line_data.get("generated_text", None) is not None: self.end_of_data = True response_obj["is_finished"] = True response_obj["text"] = line_data["token"]["text"] return response_obj chunk = next(self.byte_iterator) self.buffer.seek(0, io.SEEK_END) self.buffer.write(chunk["PayloadPart"]["Bytes"]) except StopIteration as e: if self.end_of_data == True: raise e # Re-raise StopIteration else: self.end_of_data = True return "data: [DONE]" def __aiter__(self): return self async def __anext__(self): try: while True: self.buffer.seek(self.read_pos) line = self.buffer.readline() if line and line[-1] == ord("\n"): response_obj = {"text": "", "is_finished": False} self.read_pos += len(line) + 1 full_line = line[:-1].decode("utf-8") line_data = json.loads(full_line.lstrip("data:").rstrip("/n")) if line_data.get("generated_text", None) is not None: self.end_of_data = True response_obj["is_finished"] = True response_obj["text"] = line_data["token"]["text"] return response_obj chunk = await self.byte_iterator.__anext__() self.buffer.seek(0, io.SEEK_END) self.buffer.write(chunk["PayloadPart"]["Bytes"]) except StopAsyncIteration as e: if self.end_of_data == True: raise e # Re-raise StopIteration else: self.end_of_data = True return "data: [DONE]" class SagemakerConfig: """ Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb """ max_new_tokens: Optional[int] = None top_p: Optional[float] = None temperature: Optional[float] = None return_full_text: Optional[bool] = None def __init__( self, max_new_tokens: Optional[int] = None, top_p: Optional[float] = None, temperature: Optional[float] = None, return_full_text: Optional[bool] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return { k: v for k, v in cls.__dict__.items() if not k.startswith("__") and not isinstance( v, ( types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod, ), ) and v is not None } """ SAGEMAKER AUTH Keys/Vars os.environ['AWS_ACCESS_KEY_ID'] = "" os.environ['AWS_SECRET_ACCESS_KEY'] = "" """ # set os.environ['AWS_REGION_NAME'] = def completion( model: str, messages: list, model_response: ModelResponse, print_verbose: Callable, encoding, logging_obj, custom_prompt_dict={}, hf_model_name=None, optional_params=None, litellm_params=None, logger_fn=None, acompletion: bool = False, ): import boto3 # pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) aws_access_key_id = optional_params.pop("aws_access_key_id", None) aws_region_name = optional_params.pop("aws_region_name", None) model_id = optional_params.pop("model_id", None) if aws_access_key_id != None: # uses auth params passed to completion # aws_access_key_id is not None, assume user is trying to auth using litellm.completion client = boto3.client( service_name="sagemaker-runtime", aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=aws_region_name, ) else: # aws_access_key_id is None, assume user is trying to auth using env variables # boto3 automaticaly reads env variables # we need to read region name from env # I assume majority of users use .env for auth region_name = ( get_secret("AWS_REGION_NAME") or "us-west-2" # default to us-west-2 if user not specified ) client = boto3.client( service_name="sagemaker-runtime", region_name=region_name, ) # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker inference_params = deepcopy(optional_params) ## Load Config config = litellm.SagemakerConfig.get_config() for k, v in config.items(): if ( k not in inference_params ): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in inference_params[k] = v model = model if model in custom_prompt_dict: # check if the model has a registered custom prompt model_prompt_details = custom_prompt_dict[model] prompt = custom_prompt( role_dict=model_prompt_details.get("roles", None), initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""), final_prompt_value=model_prompt_details.get("final_prompt_value", ""), messages=messages, ) elif hf_model_name in custom_prompt_dict: # check if the base huggingface model has a registered custom prompt model_prompt_details = custom_prompt_dict[hf_model_name] prompt = custom_prompt( role_dict=model_prompt_details.get("roles", None), initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""), final_prompt_value=model_prompt_details.get("final_prompt_value", ""), messages=messages, ) else: if hf_model_name is None: if "llama-2" in model.lower(): # llama-2 model if "chat" in model.lower(): # apply llama2 chat template hf_model_name = "meta-llama/Llama-2-7b-chat-hf" else: # apply regular llama2 template hf_model_name = "meta-llama/Llama-2-7b" hf_model_name = ( hf_model_name or model ) # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt) prompt = prompt_factory(model=hf_model_name, messages=messages) stream = inference_params.pop("stream", None) if stream == True: data = json.dumps( {"inputs": prompt, "parameters": inference_params, "stream": True} ).encode("utf-8") if acompletion == True: response = async_streaming( optional_params=optional_params, encoding=encoding, model_response=model_response, model=model, logging_obj=logging_obj, data=data, model_id=model_id, aws_secret_access_key=aws_secret_access_key, aws_access_key_id=aws_access_key_id, aws_region_name=aws_region_name, ) return response if model_id is not None: response = client.invoke_endpoint_with_response_stream( EndpointName=model, InferenceComponentName=model_id, ContentType="application/json", Body=data, CustomAttributes="accept_eula=true", ) else: response = client.invoke_endpoint_with_response_stream( EndpointName=model, ContentType="application/json", Body=data, CustomAttributes="accept_eula=true", ) return response["Body"] elif acompletion == True: _data = {"inputs": prompt, "parameters": inference_params} return async_completion( optional_params=optional_params, encoding=encoding, model_response=model_response, model=model, logging_obj=logging_obj, data=_data, model_id=model_id, aws_secret_access_key=aws_secret_access_key, aws_access_key_id=aws_access_key_id, aws_region_name=aws_region_name, ) data = json.dumps({"inputs": prompt, "parameters": inference_params}).encode( "utf-8" ) ## COMPLETION CALL try: if model_id is not None: ## LOGGING request_str = f""" response = client.invoke_endpoint( EndpointName={model}, InferenceComponentName={model_id}, ContentType="application/json", Body={data}, CustomAttributes="accept_eula=true", ) """ # type: ignore logging_obj.pre_call( input=prompt, api_key="", additional_args={ "complete_input_dict": data, "request_str": request_str, "hf_model_name": hf_model_name, }, ) response = client.invoke_endpoint( EndpointName=model, InferenceComponentName=model_id, ContentType="application/json", Body=data, CustomAttributes="accept_eula=true", ) else: ## LOGGING request_str = f""" response = client.invoke_endpoint( EndpointName={model}, ContentType="application/json", Body={data}, CustomAttributes="accept_eula=true", ) """ # type: ignore logging_obj.pre_call( input=prompt, api_key="", additional_args={ "complete_input_dict": data, "request_str": request_str, "hf_model_name": hf_model_name, }, ) response = client.invoke_endpoint( EndpointName=model, ContentType="application/json", Body=data, CustomAttributes="accept_eula=true", ) except Exception as e: status_code = ( getattr(e, "response", {}) .get("ResponseMetadata", {}) .get("HTTPStatusCode", 500) ) error_message = ( getattr(e, "response", {}).get("Error", {}).get("Message", str(e)) ) if "Inference Component Name header is required" in error_message: error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`" raise SagemakerError(status_code=status_code, message=error_message) response = response["Body"].read().decode("utf8") ## LOGGING logging_obj.post_call( input=prompt, api_key="", original_response=response, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response}") ## RESPONSE OBJECT completion_response = json.loads(response) try: if isinstance(completion_response, list): completion_response_choices = completion_response[0] else: completion_response_choices = completion_response completion_output = "" if "generation" in completion_response_choices: completion_output += completion_response_choices["generation"] elif "generated_text" in completion_response_choices: completion_output += completion_response_choices["generated_text"] # check if the prompt template is part of output, if so - filter it out if completion_output.startswith(prompt) and "" in prompt: completion_output = completion_output.replace(prompt, "", 1) model_response["choices"][0]["message"]["content"] = completion_output except: raise SagemakerError( message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}", status_code=500, ) ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here. prompt_tokens = len(encoding.encode(prompt)) completion_tokens = len( encoding.encode(model_response["choices"][0]["message"].get("content", "")) ) model_response["created"] = int(time.time()) model_response["model"] = model usage = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, ) setattr(model_response, "usage", usage) return model_response async def async_streaming( optional_params, encoding, model_response: ModelResponse, model: str, model_id: Optional[str], logging_obj: Any, data, aws_secret_access_key: Optional[str], aws_access_key_id: Optional[str], aws_region_name: Optional[str], ): """ Use aioboto3 """ import aioboto3 session = aioboto3.Session() if aws_access_key_id != None: # uses auth params passed to completion # aws_access_key_id is not None, assume user is trying to auth using litellm.completion _client = session.client( service_name="sagemaker-runtime", aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=aws_region_name, ) else: # aws_access_key_id is None, assume user is trying to auth using env variables # boto3 automaticaly reads env variables # we need to read region name from env # I assume majority of users use .env for auth region_name = ( get_secret("AWS_REGION_NAME") or "us-west-2" # default to us-west-2 if user not specified ) _client = session.client( service_name="sagemaker-runtime", region_name=region_name, ) async with _client as client: try: if model_id is not None: response = await client.invoke_endpoint_with_response_stream( EndpointName=model, InferenceComponentName=model_id, ContentType="application/json", Body=data, CustomAttributes="accept_eula=true", ) else: response = await client.invoke_endpoint_with_response_stream( EndpointName=model, ContentType="application/json", Body=data, CustomAttributes="accept_eula=true", ) except Exception as e: raise SagemakerError(status_code=500, message=f"{str(e)}") response = response["Body"] async for chunk in response: yield chunk async def async_completion( optional_params, encoding, model_response: ModelResponse, model: str, logging_obj: Any, data: dict, model_id: Optional[str], aws_secret_access_key: Optional[str], aws_access_key_id: Optional[str], aws_region_name: Optional[str], ): """ Use aioboto3 """ import aioboto3 session = aioboto3.Session() if aws_access_key_id != None: # uses auth params passed to completion # aws_access_key_id is not None, assume user is trying to auth using litellm.completion _client = session.client( service_name="sagemaker-runtime", aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=aws_region_name, ) else: # aws_access_key_id is None, assume user is trying to auth using env variables # boto3 automaticaly reads env variables # we need to read region name from env # I assume majority of users use .env for auth region_name = ( get_secret("AWS_REGION_NAME") or "us-west-2" # default to us-west-2 if user not specified ) _client = session.client( service_name="sagemaker-runtime", region_name=region_name, ) async with _client as client: encoded_data = json.dumps(data).encode("utf-8") try: if model_id is not None: ## LOGGING request_str = f""" response = client.invoke_endpoint( EndpointName={model}, InferenceComponentName={model_id}, ContentType="application/json", Body={data}, CustomAttributes="accept_eula=true", ) """ # type: ignore logging_obj.pre_call( input=data["inputs"], api_key="", additional_args={ "complete_input_dict": data, "request_str": request_str, }, ) response = await client.invoke_endpoint( EndpointName=model, InferenceComponentName=model_id, ContentType="application/json", Body=encoded_data, CustomAttributes="accept_eula=true", ) else: ## LOGGING request_str = f""" response = client.invoke_endpoint( EndpointName={model}, ContentType="application/json", Body={data}, CustomAttributes="accept_eula=true", ) """ # type: ignore logging_obj.pre_call( input=data["inputs"], api_key="", additional_args={ "complete_input_dict": data, "request_str": request_str, }, ) response = await client.invoke_endpoint( EndpointName=model, ContentType="application/json", Body=encoded_data, CustomAttributes="accept_eula=true", ) except Exception as e: error_message = f"{str(e)}" if "Inference Component Name header is required" in error_message: error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`" raise SagemakerError(status_code=500, message=error_message) response = await response["Body"].read() response = response.decode("utf8") ## LOGGING logging_obj.post_call( input=data["inputs"], api_key="", original_response=response, additional_args={"complete_input_dict": data}, ) ## RESPONSE OBJECT completion_response = json.loads(response) try: if isinstance(completion_response, list): completion_response_choices = completion_response[0] else: completion_response_choices = completion_response completion_output = "" if "generation" in completion_response_choices: completion_output += completion_response_choices["generation"] elif "generated_text" in completion_response_choices: completion_output += completion_response_choices["generated_text"] # check if the prompt template is part of output, if so - filter it out if completion_output.startswith(data["inputs"]) and "" in data["inputs"]: completion_output = completion_output.replace(data["inputs"], "", 1) model_response["choices"][0]["message"]["content"] = completion_output except: raise SagemakerError( message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}", status_code=500, ) ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here. prompt_tokens = len(encoding.encode(data["inputs"])) completion_tokens = len( encoding.encode(model_response["choices"][0]["message"].get("content", "")) ) model_response["created"] = int(time.time()) model_response["model"] = model usage = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, ) setattr(model_response, "usage", usage) return model_response def embedding( model: str, input: list, model_response: EmbeddingResponse, print_verbose: Callable, encoding, logging_obj, custom_prompt_dict={}, optional_params=None, litellm_params=None, logger_fn=None, ): """ Supports Huggingface Jumpstart embeddings like GPT-6B """ ### BOTO3 INIT import boto3 # pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) aws_access_key_id = optional_params.pop("aws_access_key_id", None) aws_region_name = optional_params.pop("aws_region_name", None) if aws_access_key_id is not None: # uses auth params passed to completion # aws_access_key_id is not None, assume user is trying to auth using litellm.completion client = boto3.client( service_name="sagemaker-runtime", aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=aws_region_name, ) else: # aws_access_key_id is None, assume user is trying to auth using env variables # boto3 automaticaly reads env variables # we need to read region name from env # I assume majority of users use .env for auth region_name = ( get_secret("AWS_REGION_NAME") or "us-west-2" # default to us-west-2 if user not specified ) client = boto3.client( service_name="sagemaker-runtime", region_name=region_name, ) # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker inference_params = deepcopy(optional_params) inference_params.pop("stream", None) ## Load Config config = litellm.SagemakerConfig.get_config() for k, v in config.items(): if ( k not in inference_params ): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in inference_params[k] = v #### HF EMBEDDING LOGIC data = json.dumps({"text_inputs": input}).encode("utf-8") ## LOGGING request_str = f""" response = client.invoke_endpoint( EndpointName={model}, ContentType="application/json", Body={data}, CustomAttributes="accept_eula=true", )""" # type: ignore logging_obj.pre_call( input=input, api_key="", additional_args={"complete_input_dict": data, "request_str": request_str}, ) ## EMBEDDING CALL try: response = client.invoke_endpoint( EndpointName=model, ContentType="application/json", Body=data, CustomAttributes="accept_eula=true", ) except Exception as e: status_code = ( getattr(e, "response", {}) .get("ResponseMetadata", {}) .get("HTTPStatusCode", 500) ) error_message = ( getattr(e, "response", {}).get("Error", {}).get("Message", str(e)) ) raise SagemakerError(status_code=status_code, message=error_message) response = json.loads(response["Body"].read().decode("utf8")) ## LOGGING logging_obj.post_call( input=input, api_key="", original_response=response, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response}") if "embedding" not in response: raise SagemakerError(status_code=500, message="embedding not found in response") embeddings = response["embedding"] if not isinstance(embeddings, list): raise SagemakerError( status_code=422, message=f"Response not in expected format - {embeddings}" ) output_data = [] for idx, embedding in enumerate(embeddings): output_data.append( {"object": "embedding", "index": idx, "embedding": embedding} ) model_response["object"] = "list" model_response["data"] = output_data model_response["model"] = model input_tokens = 0 for text in input: input_tokens += len(encoding.encode(text)) model_response["usage"] = Usage( prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens ) return model_response