## Uses the huggingface text generation inference API import os, copy import json from enum import Enum import requests import time from typing import Callable from litellm.utils import ModelResponse, Choices, Message from typing import Optional from .prompt_templates.factory import prompt_factory, custom_prompt class HuggingfaceError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message super().__init__( self.message ) # Call the base class constructor with the parameters it needs def validate_environment(api_key): headers = { "content-type": "application/json", } if api_key: headers["Authorization"] = f"Bearer {api_key}" return headers def completion( model: str, messages: list, api_base: Optional[str], model_response: ModelResponse, print_verbose: Callable, encoding, api_key, logging_obj, custom_prompt_dict={}, optional_params=None, litellm_params=None, logger_fn=None, ): headers = validate_environment(api_key) task = optional_params.pop("task") completion_url = "" input_text = None if "https" in model: completion_url = model elif api_base: completion_url = api_base elif "HF_API_BASE" in os.environ: completion_url = os.getenv("HF_API_BASE", "") else: completion_url = f"https://api-inference.huggingface.co/models/{model}" ### MAP INPUT PARAMS if task == "conversational": inference_params = copy.deepcopy(optional_params) inference_params.pop("details") inference_params.pop("return_full_text") past_user_inputs = [] generated_responses = [] text = "" for message in messages: if message["role"] == "user": if text != "": past_user_inputs.append(text) text = message["content"] elif message["role"] == "assistant" or message["role"] == "system": generated_responses.append(message["content"]) data = { "inputs": { "text": text, "past_user_inputs": past_user_inputs, "generated_responses": generated_responses }, "parameters": inference_params } input_text = "".join(message["content"] for message in messages) elif task == "text-generation-inference": if model in custom_prompt_dict: # check if the model has a registered custom prompt model_prompt_details = custom_prompt_dict[model] prompt = custom_prompt( role_dict=model_prompt_details["roles"], initial_prompt_value=model_prompt_details["initial_prompt_value"], final_prompt_value=model_prompt_details["final_prompt_value"], messages=messages ) else: prompt = prompt_factory(model=model, messages=messages) if "https://api-inference.huggingface.co/models" in completion_url: inference_params = copy.deepcopy(optional_params) inference_params.pop("details") data = { "inputs": prompt, "parameters": inference_params, "stream": True if "stream" in inference_params and inference_params["stream"] == True else False, } else: data = { "inputs": prompt, "parameters": optional_params, "stream": True if "stream" in optional_params and optional_params["stream"] == True else False, } input_text = prompt elif task == "other" or task == None: if model in custom_prompt_dict: # check if the model has a registered custom prompt model_prompt_details = custom_prompt_dict[model] prompt = custom_prompt( role_dict=model_prompt_details["roles"], initial_prompt_value=model_prompt_details["initial_prompt_value"], final_prompt_value=model_prompt_details["final_prompt_value"], messages=messages ) else: prompt = prompt_factory(model=model, messages=messages) inference_params = copy.deepcopy(optional_params) inference_params.pop("details") inference_params.pop("return_full_text") data = { "inputs": prompt, "parameters": inference_params, "stream": True if "stream" in optional_params and optional_params["stream"] == True else False, } input_text = prompt ## LOGGING logging_obj.pre_call( input=input_text, api_key=api_key, additional_args={"complete_input_dict": data, "task": task}, ) ## COMPLETION CALL if "stream" in optional_params and optional_params["stream"] == True: response = requests.post( completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] ) return response.iter_lines() else: response = requests.post( completion_url, headers=headers, data=json.dumps(data) ) ## LOGGING logging_obj.post_call( input=input_text, api_key=api_key, original_response=response.text, additional_args={"complete_input_dict": data, "task": task}, ) ## RESPONSE OBJECT try: completion_response = response.json() except: raise HuggingfaceError( message=response.text, status_code=response.status_code ) print_verbose(f"response: {completion_response}") if isinstance(completion_response, dict) and "error" in completion_response: print_verbose(f"completion error: {completion_response['error']}") print_verbose(f"response.status_code: {response.status_code}") raise HuggingfaceError( message=completion_response["error"], status_code=response.status_code, ) else: if task == "conversational": model_response["choices"][0]["message"][ "content" ] = completion_response["generated_text"] elif task == "text-generation-inference": model_response["choices"][0]["message"][ "content" ] = completion_response[0]["generated_text"] ## GETTING LOGPROBS + FINISH REASON if "details" in completion_response[0] and "tokens" in completion_response[0]["details"]: model_response.choices[0].finish_reason = completion_response[0]["details"]["finish_reason"] sum_logprob = 0 for token in completion_response[0]["details"]["tokens"]: sum_logprob += token["logprob"] model_response["choices"][0]["message"]["logprobs"] = sum_logprob if "best_of" in optional_params and optional_params["best_of"] > 1: if "details" in completion_response[0] and "best_of_sequences" in completion_response[0]["details"]: choices_list = [] for idx, item in enumerate(completion_response[0]["details"]["best_of_sequences"]): sum_logprob = 0 for token in item["tokens"]: sum_logprob += token["logprob"] message_obj = Message(content=item["generated_text"], logprobs=sum_logprob) choice_obj = Choices(finish_reason=item["finish_reason"], index=idx, message=message_obj) choices_list.append(choice_obj) model_response["choices"].extend(choices_list) else: model_response["choices"][0]["message"]["content"] = completion_response[0]["generated_text"] ## CALCULATING USAGE prompt_tokens = len( encoding.encode(input_text) ) ##[TODO] use the llama2 tokenizer here completion_tokens = len( encoding.encode(model_response["choices"][0]["message"]["content"]) ) ##[TODO] use the llama2 tokenizer here model_response["created"] = time.time() model_response["model"] = model model_response["usage"] = { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens, } return model_response def embedding(): # logic for parsing in - calling - parsing out model embedding calls pass