from typing import List, Literal ROUTER_MAX_FALLBACKS = 5 DEFAULT_BATCH_SIZE = 512 DEFAULT_FLUSH_INTERVAL_SECONDS = 5 DEFAULT_MAX_RETRIES = 2 DEFAULT_MAX_RECURSE_DEPTH = 10 DEFAULT_FAILURE_THRESHOLD_PERCENT = ( 0.5 # default cooldown a deployment if 50% of requests fail in a given minute ) DEFAULT_MAX_TOKENS = 4096 DEFAULT_ALLOWED_FAILS = 3 DEFAULT_REDIS_SYNC_INTERVAL = 1 DEFAULT_COOLDOWN_TIME_SECONDS = 5 DEFAULT_REPLICATE_POLLING_RETRIES = 5 DEFAULT_REPLICATE_POLLING_DELAY_SECONDS = 1 DEFAULT_IMAGE_TOKEN_COUNT = 250 DEFAULT_IMAGE_WIDTH = 300 DEFAULT_IMAGE_HEIGHT = 300 DEFAULT_MAX_TOKENS = 256 # used when providers need a default MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB = 1024 # 1MB = 1024KB SINGLE_DEPLOYMENT_TRAFFIC_FAILURE_THRESHOLD = 1000 # Minimum number of requests to consider "reasonable traffic". Used for single-deployment cooldown logic. DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET = 1024 DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET = 2048 DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET = 4096 ########## Networking constants ############################################################## _DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600 # 1 hour, re-use the same httpx client for 1 hour ########### v2 Architecture constants for managing writing updates to the database ########### REDIS_UPDATE_BUFFER_KEY = "litellm_spend_update_buffer" REDIS_DAILY_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_spend_update_buffer" REDIS_DAILY_TEAM_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_team_spend_update_buffer" REDIS_DAILY_TAG_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_tag_spend_update_buffer" MAX_REDIS_BUFFER_DEQUEUE_COUNT = 100 MAX_SIZE_IN_MEMORY_QUEUE = 10000 MAX_IN_MEMORY_QUEUE_FLUSH_COUNT = 1000 ############################################################################################### MINIMUM_PROMPT_CACHE_TOKEN_COUNT = ( 1024 # minimum number of tokens to cache a prompt by Anthropic ) DEFAULT_TRIM_RATIO = 0.75 # default ratio of tokens to trim from the end of a prompt HOURS_IN_A_DAY = 24 DAYS_IN_A_WEEK = 7 DAYS_IN_A_MONTH = 28 DAYS_IN_A_YEAR = 365 REPLICATE_MODEL_NAME_WITH_ID_LENGTH = 64 #### TOKEN COUNTING #### FUNCTION_DEFINITION_TOKEN_COUNT = 9 SYSTEM_MESSAGE_TOKEN_COUNT = 4 TOOL_CHOICE_OBJECT_TOKEN_COUNT = 4 DEFAULT_MOCK_RESPONSE_PROMPT_TOKEN_COUNT = 10 DEFAULT_MOCK_RESPONSE_COMPLETION_TOKEN_COUNT = 20 MAX_SHORT_SIDE_FOR_IMAGE_HIGH_RES = 768 MAX_LONG_SIDE_FOR_IMAGE_HIGH_RES = 2000 MAX_TILE_WIDTH = 512 MAX_TILE_HEIGHT = 512 OPENAI_FILE_SEARCH_COST_PER_1K_CALLS = 2.5 / 1000 MIN_NON_ZERO_TEMPERATURE = 0.0001 #### RELIABILITY #### REPEATED_STREAMING_CHUNK_LIMIT = 100 # catch if model starts looping the same chunk while streaming. Uses high default to prevent false positives. DEFAULT_MAX_LRU_CACHE_SIZE = 16 INITIAL_RETRY_DELAY = 0.5 MAX_RETRY_DELAY = 8.0 JITTER = 0.75 DEFAULT_IN_MEMORY_TTL = 5 # default time to live for the in-memory cache DEFAULT_POLLING_INTERVAL = 0.03 # default polling interval for the scheduler AZURE_OPERATION_POLLING_TIMEOUT = 120 REDIS_SOCKET_TIMEOUT = 0.1 REDIS_CONNECTION_POOL_TIMEOUT = 5 NON_LLM_CONNECTION_TIMEOUT = 15 # timeout for adjacent services (e.g. jwt auth) MAX_EXCEPTION_MESSAGE_LENGTH = 2000 BEDROCK_MAX_POLICY_SIZE = 75 REPLICATE_POLLING_DELAY_SECONDS = 0.5 DEFAULT_ANTHROPIC_CHAT_MAX_TOKENS = 4096 TOGETHER_AI_4_B = 4 TOGETHER_AI_8_B = 8 TOGETHER_AI_21_B = 21 TOGETHER_AI_41_B = 41 TOGETHER_AI_80_B = 80 TOGETHER_AI_110_B = 110 TOGETHER_AI_EMBEDDING_150_M = 150 TOGETHER_AI_EMBEDDING_350_M = 350 QDRANT_SCALAR_QUANTILE = 0.99 QDRANT_VECTOR_SIZE = 1536 CACHED_STREAMING_CHUNK_DELAY = 0.02 MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB = 512 DEFAULT_MAX_TOKENS_FOR_TRITON = 2000 #### Networking settings #### request_timeout: float = 6000 # time in seconds STREAM_SSE_DONE_STRING: str = "[DONE]" ### SPEND TRACKING ### DEFAULT_REPLICATE_GPU_PRICE_PER_SECOND = 0.001400 # price per second for a100 80GB FIREWORKS_AI_56_B_MOE = 56 FIREWORKS_AI_176_B_MOE = 176 FIREWORKS_AI_16_B = 16 FIREWORKS_AI_80_B = 80 LITELLM_CHAT_PROVIDERS = [ "openai", "openai_like", "xai", "custom_openai", "text-completion-openai", "cohere", "cohere_chat", "clarifai", "anthropic", "anthropic_text", "replicate", "huggingface", "together_ai", "openrouter", "vertex_ai", "vertex_ai_beta", "gemini", "ai21", "baseten", "azure", "azure_text", "azure_ai", "sagemaker", "sagemaker_chat", "bedrock", "vllm", "nlp_cloud", "petals", "oobabooga", "ollama", "ollama_chat", "deepinfra", "perplexity", "mistral", "groq", "nvidia_nim", "cerebras", "ai21_chat", "volcengine", "codestral", "text-completion-codestral", "deepseek", "sambanova", "maritalk", "cloudflare", "fireworks_ai", "friendliai", "watsonx", "watsonx_text", "triton", "predibase", "databricks", "empower", "github", "custom", "litellm_proxy", "hosted_vllm", "lm_studio", "galadriel", "github_copilot", # GitHub Copilot Chat API ] OPENAI_CHAT_COMPLETION_PARAMS = [ "functions", "function_call", "temperature", "temperature", "top_p", "n", "stream", "stream_options", "stop", "max_completion_tokens", "modalities", "prediction", "audio", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "request_timeout", "api_base", "api_version", "api_key", "deployment_id", "organization", "base_url", "default_headers", "timeout", "response_format", "seed", "tools", "tool_choice", "max_retries", "parallel_tool_calls", "logprobs", "top_logprobs", "reasoning_effort", "extra_headers", "thinking", ] openai_compatible_endpoints: List = [ "api.perplexity.ai", "api.endpoints.anyscale.com/v1", "api.deepinfra.com/v1/openai", "api.mistral.ai/v1", "codestral.mistral.ai/v1/chat/completions", "codestral.mistral.ai/v1/fim/completions", "api.groq.com/openai/v1", "https://integrate.api.nvidia.com/v1", "api.deepseek.com/v1", "api.together.xyz/v1", "app.empower.dev/api/v1", "https://api.friendli.ai/serverless/v1", "api.sambanova.ai/v1", "api.x.ai/v1", "api.galadriel.ai/v1" ] openai_compatible_providers: List = [ "anyscale", "mistral", "groq", "nvidia_nim", "cerebras", "sambanova", "ai21_chat", "ai21", "volcengine", "codestral", "deepseek", "deepinfra", "perplexity", "xinference", "xai", "together_ai", "fireworks_ai", "empower", "friendliai", "azure_ai", "github", "litellm_proxy", "hosted_vllm", "lm_studio", "galadriel", "github_copilot", # GitHub Copilot Chat API ] openai_text_completion_compatible_providers: List = ( [ # providers that support `/v1/completions` "together_ai", "fireworks_ai", "hosted_vllm", ] ) _openai_like_providers: List = [ "predibase", "databricks", "watsonx", ] # private helper. similar to openai but require some custom auth / endpoint handling, so can't use the openai sdk # well supported replicate llms replicate_models: List = [ # llama replicate supported LLMs "replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf", "a16z-infra/llama-2-13b-chat:2a7f981751ec7fdf87b5b91ad4db53683a98082e9ff7bfd12c8cd5ea85980a52", "meta/codellama-13b:1c914d844307b0588599b8393480a3ba917b660c7e9dfae681542b5325f228db", # Vicuna "replicate/vicuna-13b:6282abe6a492de4145d7bb601023762212f9ddbbe78278bd6771c8b3b2f2a13b", "joehoover/instructblip-vicuna13b:c4c54e3c8c97cd50c2d2fec9be3b6065563ccf7d43787fb99f84151b867178fe", # Flan T-5 "daanelson/flan-t5-large:ce962b3f6792a57074a601d3979db5839697add2e4e02696b3ced4c022d4767f", # Others "replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5", "replit/replit-code-v1-3b:b84f4c074b807211cd75e3e8b1589b6399052125b4c27106e43d47189e8415ad", ] clarifai_models: List = [ "clarifai/meta.Llama-3.Llama-3-8B-Instruct", "clarifai/gcp.generate.gemma-1_1-7b-it", "clarifai/mistralai.completion.mixtral-8x22B", "clarifai/cohere.generate.command-r-plus", "clarifai/databricks.drbx.dbrx-instruct", "clarifai/mistralai.completion.mistral-large", "clarifai/mistralai.completion.mistral-medium", "clarifai/mistralai.completion.mistral-small", "clarifai/mistralai.completion.mixtral-8x7B-Instruct-v0_1", "clarifai/gcp.generate.gemma-2b-it", "clarifai/gcp.generate.gemma-7b-it", "clarifai/deci.decilm.deciLM-7B-instruct", "clarifai/mistralai.completion.mistral-7B-Instruct", "clarifai/gcp.generate.gemini-pro", "clarifai/anthropic.completion.claude-v1", "clarifai/anthropic.completion.claude-instant-1_2", "clarifai/anthropic.completion.claude-instant", "clarifai/anthropic.completion.claude-v2", "clarifai/anthropic.completion.claude-2_1", "clarifai/meta.Llama-2.codeLlama-70b-Python", "clarifai/meta.Llama-2.codeLlama-70b-Instruct", "clarifai/openai.completion.gpt-3_5-turbo-instruct", "clarifai/meta.Llama-2.llama2-7b-chat", "clarifai/meta.Llama-2.llama2-13b-chat", "clarifai/meta.Llama-2.llama2-70b-chat", "clarifai/openai.chat-completion.gpt-4-turbo", "clarifai/microsoft.text-generation.phi-2", "clarifai/meta.Llama-2.llama2-7b-chat-vllm", "clarifai/upstage.solar.solar-10_7b-instruct", "clarifai/openchat.openchat.openchat-3_5-1210", "clarifai/togethercomputer.stripedHyena.stripedHyena-Nous-7B", "clarifai/gcp.generate.text-bison", "clarifai/meta.Llama-2.llamaGuard-7b", "clarifai/fblgit.una-cybertron.una-cybertron-7b-v2", "clarifai/openai.chat-completion.GPT-4", "clarifai/openai.chat-completion.GPT-3_5-turbo", "clarifai/ai21.complete.Jurassic2-Grande", "clarifai/ai21.complete.Jurassic2-Grande-Instruct", "clarifai/ai21.complete.Jurassic2-Jumbo-Instruct", "clarifai/ai21.complete.Jurassic2-Jumbo", "clarifai/ai21.complete.Jurassic2-Large", "clarifai/cohere.generate.cohere-generate-command", "clarifai/wizardlm.generate.wizardCoder-Python-34B", "clarifai/wizardlm.generate.wizardLM-70B", "clarifai/tiiuae.falcon.falcon-40b-instruct", "clarifai/togethercomputer.RedPajama.RedPajama-INCITE-7B-Chat", "clarifai/gcp.generate.code-gecko", "clarifai/gcp.generate.code-bison", "clarifai/mistralai.completion.mistral-7B-OpenOrca", "clarifai/mistralai.completion.openHermes-2-mistral-7B", "clarifai/wizardlm.generate.wizardLM-13B", "clarifai/huggingface-research.zephyr.zephyr-7B-alpha", "clarifai/wizardlm.generate.wizardCoder-15B", "clarifai/microsoft.text-generation.phi-1_5", "clarifai/databricks.Dolly-v2.dolly-v2-12b", "clarifai/bigcode.code.StarCoder", "clarifai/salesforce.xgen.xgen-7b-8k-instruct", "clarifai/mosaicml.mpt.mpt-7b-instruct", "clarifai/anthropic.completion.claude-3-opus", "clarifai/anthropic.completion.claude-3-sonnet", "clarifai/gcp.generate.gemini-1_5-pro", "clarifai/gcp.generate.imagen-2", "clarifai/salesforce.blip.general-english-image-caption-blip-2", ] huggingface_models: List = [ "meta-llama/Llama-2-7b-hf", "meta-llama/Llama-2-7b-chat-hf", "meta-llama/Llama-2-13b-hf", "meta-llama/Llama-2-13b-chat-hf", "meta-llama/Llama-2-70b-hf", "meta-llama/Llama-2-70b-chat-hf", "meta-llama/Llama-2-7b", "meta-llama/Llama-2-7b-chat", "meta-llama/Llama-2-13b", "meta-llama/Llama-2-13b-chat", "meta-llama/Llama-2-70b", "meta-llama/Llama-2-70b-chat", ] # these have been tested on extensively. But by default all text2text-generation and text-generation models are supported by liteLLM. - https://docs.litellm.ai/docs/providers empower_models = [ "empower/empower-functions", "empower/empower-functions-small", ] together_ai_models: List = [ # llama llms - chat "togethercomputer/llama-2-70b-chat", # llama llms - language / instruct "togethercomputer/llama-2-70b", "togethercomputer/LLaMA-2-7B-32K", "togethercomputer/Llama-2-7B-32K-Instruct", "togethercomputer/llama-2-7b", # falcon llms "togethercomputer/falcon-40b-instruct", "togethercomputer/falcon-7b-instruct", # alpaca "togethercomputer/alpaca-7b", # chat llms "HuggingFaceH4/starchat-alpha", # code llms "togethercomputer/CodeLlama-34b", "togethercomputer/CodeLlama-34b-Instruct", "togethercomputer/CodeLlama-34b-Python", "defog/sqlcoder", "NumbersStation/nsql-llama-2-7B", "WizardLM/WizardCoder-15B-V1.0", "WizardLM/WizardCoder-Python-34B-V1.0", # language llms "NousResearch/Nous-Hermes-Llama2-13b", "Austism/chronos-hermes-13b", "upstage/SOLAR-0-70b-16bit", "WizardLM/WizardLM-70B-V1.0", ] # supports all together ai models, just pass in the model id e.g. completion(model="together_computer/replit_code_3b",...) baseten_models: List = [ "qvv0xeq", "q841o8w", "31dxrj3", ] # FALCON 7B # WizardLM # Mosaic ML BEDROCK_INVOKE_PROVIDERS_LITERAL = Literal[ "cohere", "anthropic", "mistral", "amazon", "meta", "llama", "ai21", "nova", "deepseek_r1", ] open_ai_embedding_models: List = ["text-embedding-ada-002"] cohere_embedding_models: List = [ "embed-english-v3.0", "embed-english-light-v3.0", "embed-multilingual-v3.0", "embed-english-v2.0", "embed-english-light-v2.0", "embed-multilingual-v2.0", ] bedrock_embedding_models: List = [ "amazon.titan-embed-text-v1", "cohere.embed-english-v3", "cohere.embed-multilingual-v3", ] known_tokenizer_config = { "mistralai/Mistral-7B-Instruct-v0.1": { "tokenizer": { "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", "bos_token": "", "eos_token": "", }, "status": "success", }, "meta-llama/Meta-Llama-3-8B-Instruct": { "tokenizer": { "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}", "bos_token": "<|begin_of_text|>", "eos_token": "", }, "status": "success", }, "deepseek-r1/deepseek-r1-7b-instruct": { "tokenizer": { "add_bos_token": True, "add_eos_token": False, "bos_token": { "__type": "AddedToken", "content": "<|begin▁of▁sentence|>", "lstrip": False, "normalized": True, "rstrip": False, "single_word": False, }, "clean_up_tokenization_spaces": False, "eos_token": { "__type": "AddedToken", "content": "<|end▁of▁sentence|>", "lstrip": False, "normalized": True, "rstrip": False, "single_word": False, }, "legacy": True, "model_max_length": 16384, "pad_token": { "__type": "AddedToken", "content": "<|end▁of▁sentence|>", "lstrip": False, "normalized": True, "rstrip": False, "single_word": False, }, "sp_model_kwargs": {}, "unk_token": None, "tokenizer_class": "LlamaTokenizerFast", "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '' in content %}{% set content = content.split('')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>\\n'}}{% endif %}", }, "status": "success", }, } OPENAI_FINISH_REASONS = ["stop", "length", "function_call", "content_filter", "null"] HUMANLOOP_PROMPT_CACHE_TTL_SECONDS = 60 # 1 minute RESPONSE_FORMAT_TOOL_NAME = "json_tool_call" # default tool name used when converting response format to tool call ########################### Logging Callback Constants ########################### AZURE_STORAGE_MSFT_VERSION = "2019-07-07" PROMETHEUS_BUDGET_METRICS_REFRESH_INTERVAL_MINUTES = 5 MCP_TOOL_NAME_PREFIX = "mcp_tool" ########################### LiteLLM Proxy Specific Constants ########################### ######################################################################################## MAX_SPENDLOG_ROWS_TO_QUERY = ( 1_000_000 # if spendLogs has more than 1M rows, do not query the DB ) DEFAULT_SOFT_BUDGET = ( 50.0 # by default all litellm proxy keys have a soft budget of 50.0 ) # makes it clear this is a rate limit error for a litellm virtual key RATE_LIMIT_ERROR_MESSAGE_FOR_VIRTUAL_KEY = "LiteLLM Virtual Key user_api_key_hash" # pass through route constansts BEDROCK_AGENT_RUNTIME_PASS_THROUGH_ROUTES = [ "agents/", "knowledgebases/", "flows/", "retrieveAndGenerate/", "rerank/", "generateQuery/", "optimize-prompt/", ] BATCH_STATUS_POLL_INTERVAL_SECONDS = 3600 # 1 hour BATCH_STATUS_POLL_MAX_ATTEMPTS = 24 # for 24 hours HEALTH_CHECK_TIMEOUT_SECONDS = 60 # 60 seconds UI_SESSION_TOKEN_TEAM_ID = "litellm-dashboard" LITELLM_PROXY_ADMIN_NAME = "default_user_id" ########################### DB CRON JOB NAMES ########################### DB_SPEND_UPDATE_JOB_NAME = "db_spend_update_job" PROMETHEUS_EMIT_BUDGET_METRICS_JOB_NAME = "prometheus_emit_budget_metrics_job" DEFAULT_CRON_JOB_LOCK_TTL_SECONDS = 60 # 1 minute PROXY_BUDGET_RESCHEDULER_MIN_TIME = 597 PROXY_BUDGET_RESCHEDULER_MAX_TIME = 605 PROXY_BATCH_WRITE_AT = 10 # in seconds DEFAULT_HEALTH_CHECK_INTERVAL = 300 # 5 minutes PROMETHEUS_FALLBACK_STATS_SEND_TIME_HOURS = 9 DEFAULT_MODEL_CREATED_AT_TIME = 1677610602 # returns on `/models` endpoint DEFAULT_SLACK_ALERTING_THRESHOLD = 300 MAX_TEAM_LIST_LIMIT = 20 DEFAULT_PROMPT_INJECTION_SIMILARITY_THRESHOLD = 0.7 LENGTH_OF_LITELLM_GENERATED_KEY = 16 SECRET_MANAGER_REFRESH_INTERVAL = 86400