######################################################################### # /v1/fine_tuning Endpoints # Equivalent of https://platform.openai.com/docs/api-reference/fine-tuning ########################################################################## import asyncio import traceback from datetime import datetime, timedelta, timezone from typing import List, Optional import fastapi import httpx from fastapi import ( APIRouter, Depends, File, Form, Header, HTTPException, Request, Response, UploadFile, status, ) import litellm from litellm._logging import verbose_proxy_logger from litellm.batches.main import FileObject from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth router = APIRouter() from litellm.types.llms.openai import LiteLLMFineTuningJobCreate fine_tuning_config = None def set_fine_tuning_config(config): global fine_tuning_config fine_tuning_config = config # Function to search for specific custom_llm_provider and return its configuration def get_provider_config( custom_llm_provider: str, ): global fine_tuning_config if fine_tuning_config is None: raise ValueError( "fine_tuning_config is not set, set it on your config.yaml file." ) for setting in fine_tuning_config: if setting.get("custom_llm_provider") == custom_llm_provider: return setting return None @router.post( "/v1/fine_tuning/jobs", dependencies=[Depends(user_api_key_auth)], tags=["fine-tuning"], ) @router.post( "/fine_tuning/jobs", dependencies=[Depends(user_api_key_auth)], tags=["fine-tuning"], ) async def create_fine_tuning_job( request: Request, fastapi_response: Response, fine_tuning_request: LiteLLMFineTuningJobCreate, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Creates a fine-tuning job which begins the process of creating a new model from a given dataset. This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs Supports Identical Params as: https://platform.openai.com/docs/api-reference/fine-tuning/create Example Curl: ``` curl http://localhost:4000/v1/fine_tuning/jobs \ -H "Content-Type: application/json" \ -H "Authorization: Bearer sk-1234" \ -d '{ "model": "gpt-3.5-turbo", "training_file": "file-abc123", "hyperparameters": { "n_epochs": 4 } }' ``` """ from litellm.proxy.proxy_server import ( add_litellm_data_to_request, general_settings, get_custom_headers, proxy_config, proxy_logging_obj, version, ) try: # Convert Pydantic model to dict data = fine_tuning_request.model_dump(exclude_none=True) verbose_proxy_logger.debug( "Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)), ) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # get configs for custom_llm_provider llm_provider_config = get_provider_config( custom_llm_provider=fine_tuning_request.custom_llm_provider, ) # add llm_provider_config to data data.update(llm_provider_config) # For now, use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for fine-tuning response = await litellm.acreate_fine_tuning_job(**data) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.create_fine_tuning_job(): Exception occurred - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), )