""" Base Vertex, Google AI Studio LLM Class Handles Authentication and generating request urls for Vertex AI and Google AI Studio """ import json import os from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Tuple from litellm._logging import verbose_logger from litellm.litellm_core_utils.asyncify import asyncify from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler from litellm.types.llms.vertex_ai import VERTEX_CREDENTIALS_TYPES from .common_utils import _get_gemini_url, _get_vertex_url, all_gemini_url_modes if TYPE_CHECKING: from google.auth.credentials import Credentials as GoogleCredentialsObject else: GoogleCredentialsObject = Any class VertexBase: def __init__(self) -> None: super().__init__() self.access_token: Optional[str] = None self.refresh_token: Optional[str] = None self._credentials: Optional[GoogleCredentialsObject] = None self._credentials_project_mapping: Dict[ Tuple[Optional[VERTEX_CREDENTIALS_TYPES], Optional[str]], GoogleCredentialsObject, ] = {} self.project_id: Optional[str] = None self.async_handler: Optional[AsyncHTTPHandler] = None def get_vertex_region(self, vertex_region: Optional[str]) -> str: return vertex_region or "us-central1" def load_auth( self, credentials: Optional[VERTEX_CREDENTIALS_TYPES], project_id: Optional[str] ) -> Tuple[Any, str]: import google.auth as google_auth from google.auth import identity_pool from google.auth.transport.requests import ( Request, # type: ignore[import-untyped] ) if credentials is not None: import google.oauth2.service_account if isinstance(credentials, str): verbose_logger.debug( "Vertex: Loading vertex credentials from %s", credentials ) verbose_logger.debug( "Vertex: checking if credentials is a valid path, os.path.exists(%s)=%s, current dir %s", credentials, os.path.exists(credentials), os.getcwd(), ) try: if os.path.exists(credentials): json_obj = json.load(open(credentials)) else: json_obj = json.loads(credentials) except Exception: raise Exception( "Unable to load vertex credentials from environment. Got={}".format( credentials ) ) elif isinstance(credentials, dict): json_obj = credentials else: raise ValueError( "Invalid credentials type: {}".format(type(credentials)) ) # Check if the JSON object contains Workload Identity Federation configuration if "type" in json_obj and json_obj["type"] == "external_account": creds = identity_pool.Credentials.from_info(json_obj) else: creds = ( google.oauth2.service_account.Credentials.from_service_account_info( json_obj, scopes=["https://www.googleapis.com/auth/cloud-platform"], ) ) if project_id is None: project_id = getattr(creds, "project_id", None) else: creds, creds_project_id = google_auth.default( quota_project_id=project_id, scopes=["https://www.googleapis.com/auth/cloud-platform"], ) if project_id is None: project_id = creds_project_id creds.refresh(Request()) # type: ignore if not project_id: raise ValueError("Could not resolve project_id") if not isinstance(project_id, str): raise TypeError( f"Expected project_id to be a str but got {type(project_id)}" ) return creds, project_id def refresh_auth(self, credentials: Any) -> None: from google.auth.transport.requests import ( Request, # type: ignore[import-untyped] ) credentials.refresh(Request()) def _ensure_access_token( self, credentials: Optional[VERTEX_CREDENTIALS_TYPES], project_id: Optional[str], custom_llm_provider: Literal[ "vertex_ai", "vertex_ai_beta", "gemini" ], # if it's vertex_ai or gemini (google ai studio) ) -> Tuple[str, str]: """ Returns auth token and project id """ if custom_llm_provider == "gemini": return "", "" else: return self.get_access_token( credentials=credentials, project_id=project_id, ) def is_using_v1beta1_features(self, optional_params: dict) -> bool: """ VertexAI only supports ContextCaching on v1beta1 use this helper to decide if request should be sent to v1 or v1beta1 Returns v1beta1 if context caching is enabled Returns v1 in all other cases """ if "cached_content" in optional_params: return True if "CachedContent" in optional_params: return True return False def _check_custom_proxy( self, api_base: Optional[str], custom_llm_provider: str, gemini_api_key: Optional[str], endpoint: str, stream: Optional[bool], auth_header: Optional[str], url: str, ) -> Tuple[Optional[str], str]: """ for cloudflare ai gateway - https://github.com/BerriAI/litellm/issues/4317 ## Returns - (auth_header, url) - Tuple[Optional[str], str] """ if api_base: if custom_llm_provider == "gemini": url = "{}:{}".format(api_base, endpoint) if gemini_api_key is None: raise ValueError( "Missing gemini_api_key, please set `GEMINI_API_KEY`" ) auth_header = ( gemini_api_key # cloudflare expects api key as bearer token ) else: url = "{}:{}".format(api_base, endpoint) if stream is True: url = url + "?alt=sse" return auth_header, url def _get_token_and_url( self, model: str, auth_header: Optional[str], gemini_api_key: Optional[str], vertex_project: Optional[str], vertex_location: Optional[str], vertex_credentials: Optional[VERTEX_CREDENTIALS_TYPES], stream: Optional[bool], custom_llm_provider: Literal["vertex_ai", "vertex_ai_beta", "gemini"], api_base: Optional[str], should_use_v1beta1_features: Optional[bool] = False, mode: all_gemini_url_modes = "chat", ) -> Tuple[Optional[str], str]: """ Internal function. Returns the token and url for the call. Handles logic if it's google ai studio vs. vertex ai. Returns token, url """ if custom_llm_provider == "gemini": url, endpoint = _get_gemini_url( mode=mode, model=model, stream=stream, gemini_api_key=gemini_api_key, ) auth_header = None # this field is not used for gemin else: vertex_location = self.get_vertex_region(vertex_region=vertex_location) ### SET RUNTIME ENDPOINT ### version: Literal["v1beta1", "v1"] = ( "v1beta1" if should_use_v1beta1_features is True else "v1" ) url, endpoint = _get_vertex_url( mode=mode, model=model, stream=stream, vertex_project=vertex_project, vertex_location=vertex_location, vertex_api_version=version, ) return self._check_custom_proxy( api_base=api_base, auth_header=auth_header, custom_llm_provider=custom_llm_provider, gemini_api_key=gemini_api_key, endpoint=endpoint, stream=stream, url=url, ) def get_access_token( self, credentials: Optional[VERTEX_CREDENTIALS_TYPES], project_id: Optional[str], ) -> Tuple[str, str]: """ Get access token and project id 1. Check if credentials are already in self._credentials_project_mapping 2. If not, load credentials and add to self._credentials_project_mapping 3. Check if loaded credentials have expired 4. If expired, refresh credentials 5. Return access token and project id """ # Convert dict credentials to string for caching cache_credentials = ( json.dumps(credentials) if isinstance(credentials, dict) else credentials ) credential_cache_key = (cache_credentials, project_id) _credentials: Optional[GoogleCredentialsObject] = None verbose_logger.debug( f"Checking cached credentials for project_id: {project_id}" ) if credential_cache_key in self._credentials_project_mapping: verbose_logger.debug( f"Cached credentials found for project_id: {project_id}." ) _credentials = self._credentials_project_mapping[credential_cache_key] verbose_logger.debug("Using cached credentials") credential_project_id = _credentials.quota_project_id or getattr( _credentials, "project_id", None ) else: verbose_logger.debug( f"Credential cache key not found for project_id: {project_id}, loading new credentials" ) try: _credentials, credential_project_id = self.load_auth( credentials=credentials, project_id=project_id ) except Exception as e: verbose_logger.exception( "Failed to load vertex credentials. Check to see if credentials containing partial/invalid information." ) raise e if _credentials is None: raise ValueError( "Could not resolve credentials - either dynamically or from environment, for project_id: {}".format( project_id ) ) self._credentials_project_mapping[credential_cache_key] = _credentials ## VALIDATE CREDENTIALS verbose_logger.debug(f"Validating credentials for project_id: {project_id}") if ( project_id is not None and credential_project_id and credential_project_id != project_id ): raise ValueError( "Could not resolve project_id. Credential project_id: {} does not match requested project_id: {}".format( _credentials.quota_project_id, project_id ) ) elif ( project_id is None and credential_project_id is not None and isinstance(credential_project_id, str) ): project_id = credential_project_id if _credentials.expired: self.refresh_auth(_credentials) ## VALIDATION STEP if _credentials.token is None or not isinstance(_credentials.token, str): raise ValueError( "Could not resolve credentials token. Got None or non-string token - {}".format( _credentials.token ) ) if project_id is None: raise ValueError("Could not resolve project_id") return _credentials.token, project_id async def _ensure_access_token_async( self, credentials: Optional[VERTEX_CREDENTIALS_TYPES], project_id: Optional[str], custom_llm_provider: Literal[ "vertex_ai", "vertex_ai_beta", "gemini" ], # if it's vertex_ai or gemini (google ai studio) ) -> Tuple[str, str]: """ Async version of _ensure_access_token """ if custom_llm_provider == "gemini": return "", "" else: try: return await asyncify(self.get_access_token)( credentials=credentials, project_id=project_id, ) except Exception as e: raise e def set_headers( self, auth_header: Optional[str], extra_headers: Optional[dict] ) -> dict: headers = { "Content-Type": "application/json", } if auth_header is not None: headers["Authorization"] = f"Bearer {auth_header}" if extra_headers is not None: headers.update(extra_headers) return headers