import sys
import dotenv, json, traceback, threading
import subprocess, os
import litellm, openai
import random, uuid, requests
import datetime, time
import tiktoken
import uuid
import aiohttp
encoding = tiktoken.get_encoding("cl100k_base")
import importlib.metadata
from .integrations.traceloop import TraceloopLogger
from .integrations.helicone import HeliconeLogger
from .integrations.aispend import AISpendLogger
from .integrations.berrispend import BerriSpendLogger
from .integrations.supabase import Supabase
from .integrations.llmonitor import LLMonitorLogger
from .integrations.prompt_layer import PromptLayerLogger
from .integrations.custom_logger import CustomLogger
from .integrations.langfuse import LangFuseLogger
from .integrations.litedebugger import LiteDebugger
from openai.error import OpenAIError as OriginalError
from openai.openai_object import OpenAIObject
from .exceptions import (
AuthenticationError,
InvalidRequestError,
RateLimitError,
ServiceUnavailableError,
OpenAIError,
ContextWindowExceededError,
Timeout,
APIConnectionError,
APIError,
BudgetExceededError
)
from typing import cast, List, Dict, Union, Optional
from .caching import Cache
from .llms.prompt_templates.factory import llama_2_special_tokens
####### ENVIRONMENT VARIABLES ####################
dotenv.load_dotenv() # Loading env variables using dotenv
sentry_sdk_instance = None
capture_exception = None
add_breadcrumb = None
posthog = None
slack_app = None
alerts_channel = None
heliconeLogger = None
promptLayerLogger = None
customLogger = None
langFuseLogger = None
llmonitorLogger = None
aispendLogger = None
berrispendLogger = None
supabaseClient = None
liteDebuggerClient = None
callback_list: Optional[List[str]] = []
user_logger_fn = None
additional_details: Optional[Dict[str, str]] = {}
local_cache: Optional[Dict[str, str]] = {}
last_fetched_at = None
last_fetched_at_keys = None
######## Model Response #########################
# All liteLLM Model responses will be in this format, Follows the OpenAI Format
# https://docs.litellm.ai/docs/completion/output
# {
# 'choices': [
# {
# 'finish_reason': 'stop',
# 'index': 0,
# 'message': {
# 'role': 'assistant',
# 'content': " I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
# }
# }
# ],
# 'created': 1691429984.3852863,
# 'model': 'claude-instant-1',
# 'usage': {'prompt_tokens': 18, 'completion_tokens': 23, 'total_tokens': 41}
# }
def _generate_id(): # private helper function
return 'chatcmpl-' + str(uuid.uuid4())
class Message(OpenAIObject):
def __init__(self, content="default", role="assistant", logprobs=None, **params):
super(Message, self).__init__(**params)
self.content = content
self.role = role
self.logprobs = logprobs
class Delta(OpenAIObject):
def __init__(self, content=None, logprobs=None, role=None, **params):
super(Delta, self).__init__(**params)
if content is not None:
self.content = content
if role:
self.role = role
class Choices(OpenAIObject):
def __init__(self, finish_reason=None, index=0, message=None, **params):
super(Choices, self).__init__(**params)
if finish_reason:
self.finish_reason = finish_reason
else:
self.finish_reason = "stop"
self.index = index
if message is None:
self.message = Message(content=None)
else:
self.message = message
class StreamingChoices(OpenAIObject):
def __init__(self, finish_reason=None, index=0, delta: Optional[Delta]=None, **params):
super(StreamingChoices, self).__init__(**params)
self.finish_reason = finish_reason
self.index = index
if delta:
self.delta = delta
else:
self.delta = Delta()
class ModelResponse(OpenAIObject):
def __init__(self, id=None, choices=None, created=None, model=None, usage=None, stream=False, response_ms=None, **params):
if stream:
self.object = "chat.completion.chunk"
self.choices = [StreamingChoices()]
else:
if model in litellm.open_ai_embedding_models:
self.object = "embedding"
else:
self.object = "chat.completion"
self.choices = [Choices()]
if id is None:
self.id = _generate_id()
else:
self.id = id
if created is None:
self.created = int(time.time())
else:
self.created = created
if response_ms:
self.response_ms = response_ms
else:
self.response_ms = None
self.model = model
self.usage = (
usage
if usage
else {
"prompt_tokens": None,
"completion_tokens": None,
"total_tokens": None,
}
)
super(ModelResponse, self).__init__(**params)
def to_dict_recursive(self):
d = super().to_dict_recursive()
d["choices"] = [choice.to_dict_recursive() for choice in self.choices]
return d
############################################################
def print_verbose(print_statement):
if litellm.set_verbose:
print(f"LiteLLM: {print_statement}")
####### LOGGING ###################
from enum import Enum
class CallTypes(Enum):
embedding = 'embedding'
completion = 'completion'
# Logging function -> log the exact model details + what's being sent | Non-Blocking
class Logging:
global supabaseClient, liteDebuggerClient, promptLayerLogger
def __init__(self, model, messages, stream, call_type, start_time, litellm_call_id, function_id):
if call_type not in [item.value for item in CallTypes]:
allowed_values = ", ".join([item.value for item in CallTypes])
raise ValueError(f"Invalid call_type {call_type}. Allowed values: {allowed_values}")
self.model = model
self.messages = messages
self.stream = stream
self.start_time = start_time # log the call start time
self.call_type = call_type
self.litellm_call_id = litellm_call_id
self.function_id = function_id
def update_environment_variables(self, model, user, optional_params, litellm_params):
self.optional_params = optional_params
self.model = model
self.user = user
self.litellm_params = litellm_params
self.logger_fn = litellm_params["logger_fn"]
print_verbose(f"self.optional_params: {self.optional_params}")
self.model_call_details = {
"model": self.model,
"messages": self.messages,
"optional_params": self.optional_params,
"litellm_params": self.litellm_params,
}
def pre_call(self, input, api_key, model=None, additional_args={}):
# Log the exact input to the LLM API
print_verbose(f"Logging Details Pre-API Call for call id {self.litellm_call_id}")
litellm.error_logs['PRE_CALL'] = locals()
try:
# print_verbose(f"logging pre call for model: {self.model} with call type: {self.call_type}")
self.model_call_details["input"] = input
self.model_call_details["api_key"] = api_key
self.model_call_details["additional_args"] = additional_args
if (
model
): # if model name was changes pre-call, overwrite the initial model call name with the new one
self.model_call_details["model"] = model
# User Logging -> if you pass in a custom logging function
print_verbose(f"model call details: {self.model_call_details}")
if self.logger_fn and callable(self.logger_fn):
try:
self.logger_fn(
self.model_call_details
) # Expectation: any logger function passed in by the user should accept a dict object
except Exception as e:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
if litellm.max_budget and self.stream:
start_time = self.start_time
end_time = self.start_time # no time has passed as the call hasn't been made yet
time_diff = (end_time - start_time).total_seconds()
float_diff = float(time_diff)
litellm._current_cost += litellm.completion_cost(model=self.model, prompt="".join(message["content"] for message in self.messages), completion="", total_time=float_diff)
# Input Integration Logging -> If you want to log the fact that an attempt to call the model was made
for callback in litellm.input_callback:
try:
if callback == "supabase":
print_verbose("reaches supabase for logging!")
model = self.model_call_details["model"]
messages = self.model_call_details["input"]
print(f"supabaseClient: {supabaseClient}")
supabaseClient.input_log_event(
model=model,
messages=messages,
end_user=litellm._thread_context.user,
litellm_call_id=self.litellm_params["litellm_call_id"],
print_verbose=print_verbose,
)
elif callback == "lite_debugger":
print_verbose(f"reaches litedebugger for logging! - model_call_details {self.model_call_details}")
model = self.model_call_details["model"]
messages = self.model_call_details["input"]
print_verbose(f"liteDebuggerClient: {liteDebuggerClient}")
liteDebuggerClient.input_log_event(
model=model,
messages=messages,
end_user=litellm._thread_context.user,
litellm_call_id=self.litellm_params["litellm_call_id"],
litellm_params=self.model_call_details["litellm_params"],
optional_params=self.model_call_details["optional_params"],
print_verbose=print_verbose,
call_type=self.call_type
)
except Exception as e:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while input logging with integrations {traceback.format_exc()}"
)
print_verbose(
f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
)
if capture_exception: # log this error to sentry for debugging
capture_exception(e)
except:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
print_verbose(
f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
)
if capture_exception: # log this error to sentry for debugging
capture_exception(e)
def post_call(self, original_response, input=None, api_key=None, additional_args={}):
# Log the exact result from the LLM API, for streaming - log the type of response received
litellm.error_logs['POST_CALL'] = locals()
try:
self.model_call_details["input"] = input
self.model_call_details["api_key"] = api_key
self.model_call_details["original_response"] = original_response
self.model_call_details["additional_args"] = additional_args
# User Logging -> if you pass in a custom logging function
print_verbose(f"model call details: {self.model_call_details}")
print_verbose(
f"Logging Details Post-API Call: logger_fn - {self.logger_fn} | callable(logger_fn) - {callable(self.logger_fn)}"
)
if self.logger_fn and callable(self.logger_fn):
try:
self.logger_fn(
self.model_call_details
) # Expectation: any logger function passed in by the user should accept a dict object
except Exception as e:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
# Input Integration Logging -> If you want to log the fact that an attempt to call the model was made
for callback in litellm.input_callback:
try:
if callback == "lite_debugger":
print_verbose("reaches litedebugger for post-call logging!")
print_verbose(f"liteDebuggerClient: {liteDebuggerClient}")
liteDebuggerClient.post_call_log_event(
original_response=original_response,
litellm_call_id=self.litellm_params["litellm_call_id"],
print_verbose=print_verbose,
call_type = self.call_type,
stream = self.stream,
)
except:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while post-call logging with integrations {traceback.format_exc()}"
)
print_verbose(
f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
)
if capture_exception: # log this error to sentry for debugging
capture_exception(e)
except:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
pass
def success_handler(self, result, start_time=None, end_time=None):
print_verbose(
f"Logging Details LiteLLM-Success Call"
)
try:
if start_time is None:
start_time = self.start_time
if end_time is None:
end_time = datetime.datetime.now()
print_verbose(f"success callbacks: {litellm.success_callback}")
if litellm.max_budget and self.stream:
time_diff = (end_time - start_time).total_seconds()
float_diff = float(time_diff)
litellm._current_cost += litellm.completion_cost(model=self.model, prompt="", completion=result["content"], total_time=float_diff)
for callback in litellm.success_callback:
try:
if callback == "lite_debugger":
print_verbose("reaches lite_debugger for logging!")
print_verbose(f"liteDebuggerClient: {liteDebuggerClient}")
print_verbose(f"liteDebuggerClient details function {self.call_type} and stream set to {self.stream}")
liteDebuggerClient.log_event(
end_user=litellm._thread_context.user,
response_obj=result,
start_time=start_time,
end_time=end_time,
litellm_call_id=self.litellm_call_id,
print_verbose=print_verbose,
call_type = self.call_type,
stream = self.stream,
)
if callback == "api_manager":
print_verbose("reaches api manager for updating model cost")
litellm.apiManager.update_cost(completion_obj=result, user=self.user)
if callback == "cache":
# print("entering logger first time")
# print(self.litellm_params["stream_response"])
if litellm.cache != None and self.model_call_details.get('optional_params', {}).get('stream', False) == True:
litellm_call_id = self.litellm_params["litellm_call_id"]
if litellm_call_id in self.litellm_params["stream_response"]:
# append for the given call_id
if self.litellm_params["stream_response"][litellm_call_id]["choices"][0]["message"]["content"] == "default":
self.litellm_params["stream_response"][litellm_call_id]["choices"][0]["message"]["content"] = result["content"] # handle first try
else:
self.litellm_params["stream_response"][litellm_call_id]["choices"][0]["message"]["content"] += result["content"]
else: # init a streaming response for this call id
new_model_response = ModelResponse(choices=[Choices(message=Message(content="default"))])
#print("creating new model response")
#print(new_model_response)
self.litellm_params["stream_response"][litellm_call_id] = new_model_response
#print("adding to cache for", litellm_call_id)
litellm.cache.add_cache(self.litellm_params["stream_response"][litellm_call_id], **self.model_call_details)
if callback == "promptlayer":
print_verbose("reaches promptlayer for logging!")
promptLayerLogger.log_event(
kwargs=self.model_call_details,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
except Exception as e:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging with integrations {traceback.format_exc()}"
)
print_verbose(
f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
)
if capture_exception: # log this error to sentry for debugging
capture_exception(e)
except:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}"
)
pass
def failure_handler(self, exception, traceback_exception, start_time=None, end_time=None):
print_verbose(
f"Logging Details LiteLLM-Failure Call"
)
try:
if start_time is None:
start_time = self.start_time
if end_time is None:
end_time = datetime.datetime.now()
for callback in litellm.failure_callback:
try:
if callback == "lite_debugger":
print_verbose("reaches lite_debugger for logging!")
print_verbose(f"liteDebuggerClient: {liteDebuggerClient}")
result = {
"model": self.model,
"created": time.time(),
"error": traceback_exception,
"usage": {
"prompt_tokens": prompt_token_calculator(
self.model, messages=self.messages
),
"completion_tokens": 0,
},
}
liteDebuggerClient.log_event(
model=self.model,
messages=self.messages,
end_user=litellm._thread_context.user,
response_obj=result,
start_time=start_time,
end_time=end_time,
litellm_call_id=self.litellm_call_id,
print_verbose=print_verbose,
call_type = self.call_type,
stream = self.stream,
)
except Exception as e:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging with integrations {traceback.format_exc()}"
)
print_verbose(
f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
)
if capture_exception: # log this error to sentry for debugging
capture_exception(e)
except:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging {traceback.format_exc()}"
)
pass
def exception_logging(
additional_args={},
logger_fn=None,
exception=None,
):
try:
model_call_details = {}
if exception:
model_call_details["exception"] = exception
model_call_details["additional_args"] = additional_args
# User Logging -> if you pass in a custom logging function or want to use sentry breadcrumbs
print_verbose(
f"Logging Details: logger_fn - {logger_fn} | callable(logger_fn) - {callable(logger_fn)}"
)
if logger_fn and callable(logger_fn):
try:
logger_fn(
model_call_details
) # Expectation: any logger function passed in by the user should accept a dict object
except Exception as e:
print(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
except Exception as e:
print(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
)
pass
####### CLIENT ###################
# make it easy to log if completion/embedding runs succeeded or failed + see what happened | Non-Blocking
def client(original_function):
global liteDebuggerClient, get_all_keys
def function_setup(
start_time, *args, **kwargs
): # just run once to check if user wants to send their data anywhere - PostHog/Sentry/Slack/etc.
try:
global callback_list, add_breadcrumb, user_logger_fn, Logging
function_id = kwargs["id"] if "id" in kwargs else None
if litellm.use_client or ("use_client" in kwargs and kwargs["use_client"] == True):
print_verbose(f"litedebugger initialized")
if "lite_debugger" not in litellm.input_callback:
litellm.input_callback.append("lite_debugger")
if "lite_debugger" not in litellm.success_callback:
litellm.success_callback.append("lite_debugger")
if "lite_debugger" not in litellm.failure_callback:
litellm.failure_callback.append("lite_debugger")
if (
len(litellm.input_callback) > 0
or len(litellm.success_callback) > 0
or len(litellm.failure_callback) > 0
) and len(callback_list) == 0:
callback_list = list(
set(
litellm.input_callback
+ litellm.success_callback
+ litellm.failure_callback
)
)
set_callbacks(
callback_list=callback_list,
function_id=function_id
)
if add_breadcrumb:
add_breadcrumb(
category="litellm.llm_call",
message=f"Positional Args: {args}, Keyword Args: {kwargs}",
level="info",
)
if "logger_fn" in kwargs:
user_logger_fn = kwargs["logger_fn"]
# CRASH REPORTING TELEMETRY
crash_reporting(*args, **kwargs)
# INIT LOGGER - for user-specified integrations
model = args[0] if len(args) > 0 else kwargs["model"]
call_type = original_function.__name__
if call_type == CallTypes.completion.value:
messages = args[1] if len(args) > 1 else kwargs["messages"]
elif call_type == CallTypes.embedding.value:
messages = args[1] if len(args) > 1 else kwargs["input"]
stream = True if "stream" in kwargs and kwargs["stream"] == True else False
logging_obj = Logging(model=model, messages=messages, stream=stream, litellm_call_id=kwargs["litellm_call_id"], function_id=function_id, call_type=call_type, start_time=start_time)
return logging_obj
except Exception as e: # DO NOT BLOCK running the function because of this
print_verbose(f"[Non-Blocking] {traceback.format_exc()}; args - {args}; kwargs - {kwargs}")
print(e)
pass
def crash_reporting(*args, **kwargs):
if litellm.telemetry:
try:
model = args[0] if len(args) > 0 else kwargs["model"]
exception = kwargs["exception"] if "exception" in kwargs else None
custom_llm_provider = (
kwargs["custom_llm_provider"]
if "custom_llm_provider" in kwargs
else None
)
safe_crash_reporting(
model=model,
exception=exception,
custom_llm_provider=custom_llm_provider,
) # log usage-crash details. Do not log any user details. If you want to turn this off, set `litellm.telemetry=False`.
except:
# [Non-Blocking Error]
pass
def wrapper(*args, **kwargs):
start_time = datetime.datetime.now()
result = None
litellm_call_id = str(uuid.uuid4())
kwargs["litellm_call_id"] = litellm_call_id
try:
model = args[0] if len(args) > 0 else kwargs["model"]
except:
raise ValueError("model param not passed in.")
try:
logging_obj = function_setup(start_time, *args, **kwargs)
kwargs["litellm_logging_obj"] = logging_obj
# [OPTIONAL] CHECK BUDGET
if litellm.max_budget:
if litellm._current_cost > litellm.max_budget:
raise BudgetExceededError(current_cost=litellm._current_cost, max_budget=litellm.max_budget)
# [OPTIONAL] CHECK CACHE
# remove this after deprecating litellm.caching
if (litellm.caching or litellm.caching_with_models) and litellm.cache is None:
litellm.cache = Cache()
if kwargs.get("caching", False): # allow users to control returning cached responses from the completion function
# checking cache
if (litellm.cache != None or litellm.caching or litellm.caching_with_models):
print_verbose(f"LiteLLM: Checking Cache")
cached_result = litellm.cache.get_cache(*args, **kwargs)
if cached_result != None:
return cached_result
# MODEL CALL
result = original_function(*args, **kwargs)
end_time = datetime.datetime.now()
if "stream" in kwargs and kwargs["stream"] == True:
# TODO: Add to cache for streaming
return result
# [OPTIONAL] ADD TO CACHE
if litellm.caching or litellm.caching_with_models or litellm.cache != None: # user init a cache object
litellm.cache.add_cache(result, *args, **kwargs)
# [OPTIONAL] Return LiteLLM call_id
if litellm.use_client == True:
result['litellm_call_id'] = litellm_call_id
# LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated
logging_obj.success_handler(result, start_time, end_time)
# threading.Thread(target=logging_obj.success_handler, args=(result, start_time, end_time)).start()
my_thread = threading.Thread(
target=handle_success, args=(args, kwargs, result, start_time, end_time)
) # don't interrupt execution of main thread
my_thread.start()
# RETURN RESULT
result.response_ms = (end_time - start_time).total_seconds() * 1000 # return response latency in ms like openai
return result
except Exception as e:
traceback_exception = traceback.format_exc()
crash_reporting(*args, **kwargs, exception=traceback_exception)
end_time = datetime.datetime.now()
# LOG FAILURE - handle streaming failure logging in the _next_ object, remove `handle_failure` once it's deprecated
threading.Thread(target=logging_obj.failure_handler, args=(e, traceback_exception, start_time, end_time)).start()
my_thread = threading.Thread(
target=handle_failure,
args=(e, traceback_exception, start_time, end_time, args, kwargs),
) # don't interrupt execution of main thread
my_thread.start()
if hasattr(e, "message"):
if (
liteDebuggerClient and liteDebuggerClient.dashboard_url != None
): # make it easy to get to the debugger logs if you've initialized it
e.message += f"\n Check the log in your dashboard - {liteDebuggerClient.dashboard_url}"
raise e
return wrapper
####### USAGE CALCULATOR ################
# Extract the number of billion parameters from the model name
# only used for together_computer LLMs
def get_model_params_and_category(model_name):
import re
params_match = re.search(r'(\d+b)', model_name) # catch all decimals like 3b, 70b, etc
category = None
if params_match != None:
params_match = params_match.group(1)
params_match = params_match.replace("b", "")
params_billion = float(params_match)
# Determine the category based on the number of parameters
if params_billion <= 3.0:
category = "together-ai-up-to-3b"
elif params_billion <= 7.0:
category = "together-ai-3.1b-7b"
elif params_billion <= 20.0:
category = "together-ai-7.1b-20b"
elif params_billion <= 40.0:
category = "together-ai-20.1b-40b"
elif params_billion <= 70.0:
category = "together-ai-40.1b-70b"
return category
return None
def get_replicate_completion_pricing(completion_response=None, total_time=0.0):
# see https://replicate.com/pricing
a100_40gb_price_per_second_public = 0.001150
# for all litellm currently supported LLMs, almost all requests go to a100_80gb
a100_80gb_price_per_second_public = 0.001400 # assume all calls sent to A100 80GB for now
if total_time == 0.0:
start_time = completion_response['created']
end_time = completion_response["ended"]
total_time = end_time - start_time
return a100_80gb_price_per_second_public*total_time
def token_counter(model="", text=None, messages = None):
# Args:
# text: raw text string passed to model
# messages: List of Dicts passed to completion, messages = [{"role": "user", "content": "hello"}]
# use tiktoken or anthropic's tokenizer depending on the model
if text == None:
if messages != None:
text = " ".join([message["content"] for message in messages])
num_tokens = 0
if model != None and "claude" in model:
try:
import anthropic
except Exception:
# if importing anthropic fails
# don't raise an exception
num_tokens = len(encoding.encode(text))
return num_tokens
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
anthropic = Anthropic()
num_tokens = anthropic.count_tokens(text)
else:
num_tokens = len(encoding.encode(text))
return num_tokens
def cost_per_token(model="gpt-3.5-turbo", prompt_tokens=0, completion_tokens=0):
# given
prompt_tokens_cost_usd_dollar = 0
completion_tokens_cost_usd_dollar = 0
model_cost_ref = litellm.model_cost
if model in model_cost_ref:
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
else:
# calculate average input cost
input_cost_sum = 0
output_cost_sum = 0
model_cost_ref = litellm.model_cost
for model in model_cost_ref:
input_cost_sum += model_cost_ref[model]["input_cost_per_token"]
output_cost_sum += model_cost_ref[model]["output_cost_per_token"]
avg_input_cost = input_cost_sum / len(model_cost_ref.keys())
avg_output_cost = output_cost_sum / len(model_cost_ref.keys())
prompt_tokens_cost_usd_dollar = avg_input_cost * prompt_tokens
completion_tokens_cost_usd_dollar = avg_output_cost * completion_tokens
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
def completion_cost(
completion_response=None,
model="gpt-3.5-turbo",
prompt="",
completion="",
total_time=0.0, # used for replicate
):
"""
Calculate the cost of a given completion call fot GPT-3.5-turbo, llama2, any litellm supported llm.
Parameters:
completion_response (litellm.ModelResponses): [Required] The response received from a LiteLLM completion request.
[OPTIONAL PARAMS]
model (str): Optional. The name of the language model used in the completion calls
prompt (str): Optional. The input prompt passed to the llm
completion (str): Optional. The output completion text from the llm
total_time (float): Optional. (Only used for Replicate LLMs) The total time used for the request in seconds
Returns:
float: The cost in USD dollars for the completion based on the provided parameters.
Note:
- If completion_response is provided, the function extracts token information and the model name from it.
- If completion_response is not provided, the function calculates token counts based on the model and input text.
- The cost is calculated based on the model, prompt tokens, and completion tokens.
- For certain models containing "togethercomputer" in the name, prices are based on the model size.
- For Replicate models, the cost is calculated based on the total time used for the request.
Exceptions:
- If an error occurs during execution, the function returns 0.0 without blocking the user's execution path.
"""
try:
# Handle Inputs to completion_cost
prompt_tokens = 0
completion_tokens = 0
if completion_response != None:
# get input/output tokens from completion_response
prompt_tokens = completion_response['usage']['prompt_tokens']
completion_tokens = completion_response['usage']['completion_tokens']
model = completion_response['model'] # get model from completion_response
else:
prompt_tokens = token_counter(model=model, text=prompt)
completion_tokens = token_counter(model=model, text=completion)
# Calculate cost based on prompt_tokens, completion_tokens
if "togethercomputer" in model:
# together ai prices based on size of llm
# get_model_params_and_category takes a model name and returns the category of LLM size it is in model_prices_and_context_window.json
model = get_model_params_and_category(model)
# replicate llms are calculate based on time for request running
# see https://replicate.com/pricing
elif (
model in litellm.replicate_models or
"replicate" in model
):
return get_replicate_completion_pricing(completion_response, total_time)
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_token(
model=model, prompt_tokens=prompt_tokens, completion_tokens=completion_tokens
)
return prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
except:
return 0.0 # this should not block a users execution path
####### HELPER FUNCTIONS ################
def get_litellm_params(
return_async=False,
api_key=None,
force_timeout=600,
azure=False,
logger_fn=None,
verbose=False,
hugging_face=False,
replicate=False,
together_ai=False,
custom_llm_provider=None,
api_base=None,
litellm_call_id=None,
model_alias_map=None,
completion_call_id=None,
metadata=None
):
litellm_params = {
"return_async": return_async,
"api_key": api_key,
"force_timeout": force_timeout,
"logger_fn": logger_fn,
"verbose": verbose,
"custom_llm_provider": custom_llm_provider,
"api_base": api_base,
"litellm_call_id": litellm_call_id,
"model_alias_map": model_alias_map,
"completion_call_id": completion_call_id,
"metadata": metadata,
"stream_response": {} # litellm_call_id: ModelResponse Dict
}
return litellm_params
def get_optional_params( # use the openai defaults
# 12 optional params
functions=[],
function_call="",
temperature=1,
top_p=1,
n=1,
stream=False,
stop=None,
max_tokens=float("inf"),
presence_penalty=0,
frequency_penalty=0,
logit_bias={},
num_beams=1,
remove_input=False, # for nlp_cloud
user="",
deployment_id=None,
model=None,
custom_llm_provider="",
top_k=40,
return_full_text=False,
task=None
):
optional_params = {}
if model in litellm.anthropic_models:
# handle anthropic params
if stream:
optional_params["stream"] = stream
if stop != None:
optional_params["stop_sequences"] = stop
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
return optional_params
elif model in litellm.cohere_models:
# handle cohere params
if stream:
optional_params["stream"] = stream
if temperature != 1:
optional_params["temperature"] = temperature
if max_tokens != float("inf"):
optional_params["max_tokens"] = max_tokens
if logit_bias != {}:
optional_params["logit_bias"] = logit_bias
return optional_params
elif custom_llm_provider == "replicate":
if stream:
optional_params["stream"] = stream
return optional_params
if max_tokens != float("inf"):
if "vicuna" in model or "flan" in model:
optional_params["max_length"] = max_tokens
else:
optional_params["max_new_tokens"] = max_tokens
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
if top_k != 40:
optional_params["top_k"] = top_k
if stop != None:
optional_params["stop_sequences"] = stop
elif custom_llm_provider == "huggingface":
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
if n != 1:
optional_params["best_of"] = n
optional_params["do_sample"] = True # need to sample if you want best of for hf inference endpoints
if stream:
optional_params["stream"] = stream
if stop != None:
optional_params["stop"] = stop
if max_tokens != float("inf"):
optional_params["max_new_tokens"] = max_tokens
if presence_penalty != 0:
optional_params["repetition_penalty"] = presence_penalty
optional_params["return_full_text"] = return_full_text
optional_params["details"] = True
optional_params["task"] = task
elif custom_llm_provider == "together_ai":
if stream:
optional_params["stream_tokens"] = stream
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
if top_k != 40:
optional_params["top_k"] = top_k
if max_tokens != float("inf"):
optional_params["max_tokens"] = max_tokens
if frequency_penalty != 0:
optional_params["frequency_penalty"] = frequency_penalty # TODO: Check if should be repetition penalty
if stop != None:
optional_params["stop"] = stop #TG AI expects a list, example ["\n\n\n\n","<|endoftext|>"]
elif (
model in litellm.vertex_chat_models or model in litellm.vertex_code_chat_models
): # chat-bison has diff args from chat-bison@001, ty Google :)
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
if max_tokens != float("inf"):
optional_params["max_output_tokens"] = max_tokens
elif model in litellm.vertex_text_models:
# required params for all text vertex calls
# temperature=0.2, top_p=0.1, top_k=20
# always set temperature, top_p, top_k else, text bison fails
optional_params["temperature"] = temperature
optional_params["top_p"] = top_p
optional_params["top_k"] = top_k
if max_tokens != float("inf"):
optional_params["max_output_tokens"] = max_tokens
elif model in model in litellm.vertex_code_text_models:
optional_params["temperature"] = temperature
if max_tokens != float("inf"):
optional_params["max_output_tokens"] = max_tokens
elif custom_llm_provider == "baseten":
optional_params["temperature"] = temperature
optional_params["stream"] = stream
if top_p != 1:
optional_params["top_p"] = top_p
optional_params["top_k"] = top_k
optional_params["num_beams"] = num_beams
if max_tokens != float("inf"):
optional_params["max_new_tokens"] = max_tokens
elif custom_llm_provider == "sagemaker":
if "llama-2" in model:
# llama-2 models on sagemaker support the following args
"""
max_new_tokens: Model generates text until the output length (excluding the input context length) reaches max_new_tokens. If specified, it must be a positive integer.
temperature: Controls the randomness in the output. Higher temperature results in output sequence with low-probability words and lower temperature results in output sequence with high-probability words. If temperature -> 0, it results in greedy decoding. If specified, it must be a positive float.
top_p: In each step of text generation, sample from the smallest possible set of words with cumulative probability top_p. If specified, it must be a float between 0 and 1.
return_full_text: If True, input text will be part of the output generated text. If specified, it must be boolean. The default value for it is False.
"""
if max_tokens != float("inf"):
optional_params["max_new_tokens"] = max_tokens
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
elif custom_llm_provider == "bedrock":
if "ai21" in model or "anthropic" in model:
# params "maxTokens":200,"temperature":0,"topP":250,"stop_sequences":[],
# https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=j2-ultra
if max_tokens != float("inf"):
optional_params["maxTokens"] = max_tokens
if temperature != 1:
optional_params["temperature"] = temperature
if stop != None:
optional_params["stop_sequences"] = stop
if top_p != 1:
optional_params["topP"] = top_p
elif "amazon" in model: # amazon titan llms
# see https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-large
if max_tokens != float("inf"):
optional_params["maxTokenCount"] = max_tokens
if temperature != 1:
optional_params["temperature"] = temperature
if stop != None:
optional_params["stopSequences"] = stop
if top_p != 1:
optional_params["topP"] = top_p
elif model in litellm.aleph_alpha_models:
if max_tokens != float("inf"):
optional_params["maximum_tokens"] = max_tokens
if stream:
optional_params["stream"] = stream
if temperature != 1:
optional_params["temperature"] = temperature
if top_k != 40:
optional_params["top_k"] = top_k
if top_p != 1:
optional_params["top_p"] = top_p
if presence_penalty != 0:
optional_params["presence_penalty"] = presence_penalty
if frequency_penalty != 0:
optional_params["frequency_penalty"] = frequency_penalty
if n != 1:
optional_params["n"] = n
if stop != None:
optional_params["stop_sequences"] = stop
elif model in litellm.nlp_cloud_models or custom_llm_provider == "nlp_cloud":
if max_tokens != float("inf"):
optional_params["max_length"] = max_tokens
if stream:
optional_params["stream"] = stream
if temperature != 1:
optional_params["temperature"] = temperature
if top_k != 40:
optional_params["top_k"] = top_k
if top_p != 1:
optional_params["top_p"] = top_p
if presence_penalty != 0:
optional_params["presence_penalty"] = presence_penalty
if frequency_penalty != 0:
optional_params["frequency_penalty"] = frequency_penalty
if num_beams != 1:
optional_params["num_beams"] = num_beams
if n != 1:
optional_params["num_return_sequences"] = n
if remove_input == True:
optional_params["remove_input"] = True
if stop != None:
optional_params["stop_sequences"] = stop
elif model in litellm.petals_models or custom_llm_provider == "petals":
# max_new_tokens=1,temperature=0.9, top_p=0.6
if max_tokens != float("inf"):
optional_params["max_new_tokens"] = max_tokens
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
else: # assume passing in params for openai/azure openai
if functions != []:
optional_params["functions"] = functions
if function_call != "":
optional_params["function_call"] = function_call
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
if n != 1:
optional_params["n"] = n
if stream:
optional_params["stream"] = stream
if stop != None:
optional_params["stop"] = stop
if max_tokens != float("inf"):
optional_params["max_tokens"] = max_tokens
if presence_penalty != 0:
optional_params["presence_penalty"] = presence_penalty
if frequency_penalty != 0:
optional_params["frequency_penalty"] = frequency_penalty
if logit_bias != {}:
optional_params["logit_bias"] = logit_bias
if user != "":
optional_params["user"] = user
if deployment_id != None:
optional_params["deployment_id"] = deployment_id
return optional_params
return optional_params
def get_llm_provider(model: str, custom_llm_provider: Optional[str] = None):
try:
# check if llm provider provided
if custom_llm_provider:
return model, custom_llm_provider
# check if llm provider part of model name
if model.split("/",1)[0] in litellm.provider_list:
custom_llm_provider = model.split("/", 1)[0]
model = model.split("/", 1)[1]
return model, custom_llm_provider
# check if model in known model provider list
## openai - chatcompletion + text completion
if model in litellm.open_ai_chat_completion_models:
custom_llm_provider = "openai"
elif model in litellm.open_ai_text_completion_models:
custom_llm_provider = "text-completion-openai"
## anthropic
elif model in litellm.anthropic_models:
custom_llm_provider = "anthropic"
## cohere
elif model in litellm.cohere_models:
custom_llm_provider = "cohere"
## replicate
elif model in litellm.replicate_models:
custom_llm_provider = "replicate"
## openrouter
elif model in litellm.openrouter_models:
custom_llm_provider = "openrouter"
## vertex - text + chat models
elif model in litellm.vertex_chat_models or model in litellm.vertex_text_models:
custom_llm_provider = "vertex_ai"
## huggingface
elif model in litellm.huggingface_models:
custom_llm_provider = "huggingface"
## ai21
elif model in litellm.ai21_models:
custom_llm_provider = "ai21"
## together_ai
elif model in litellm.together_ai_models:
custom_llm_provider = "together_ai"
## aleph_alpha
elif model in litellm.aleph_alpha_models:
custom_llm_provider = "aleph_alpha"
## baseten
elif model in litellm.baseten_models:
custom_llm_provider = "baseten"
## nlp_cloud
elif model in litellm.nlp_cloud_models:
custom_llm_provider = "nlp_cloud"
## petals
elif model in litellm.petals_models:
custom_llm_provider = "petals"
if custom_llm_provider is None or custom_llm_provider=="":
raise ValueError(f"LLM Provider NOT provided. Pass in the LLM provider you are trying to call. E.g. For 'Huggingface' inference endpoints pass in `completion(model='huggingface/{model}',..)` Learn more: https://docs.litellm.ai/docs/providers")
return model, custom_llm_provider
except Exception as e:
raise e
def get_api_key(llm_provider: str, dynamic_api_key: Optional[str]):
api_key = (dynamic_api_key or litellm.api_key)
# openai
if llm_provider == "openai" or llm_provider == "text-completion-openai":
api_key = (
api_key or
litellm.openai_key or
get_secret("OPENAI_API_KEY")
)
# anthropic
elif llm_provider == "anthropic":
api_key = (
api_key or
litellm.anthropic_key or
get_secret("ANTHROPIC_API_KEY")
)
# ai21
elif llm_provider == "ai21":
api_key = (
api_key or
litellm.ai21_key or
get_secret("AI211_API_KEY")
)
# aleph_alpha
elif llm_provider == "aleph_alpha":
api_key = (
api_key or
litellm.aleph_alpha_key or
get_secret("ALEPH_ALPHA_API_KEY")
)
# baseten
elif llm_provider == "baseten":
api_key = (
api_key or
litellm.baseten_key or
get_secret("BASETEN_API_KEY")
)
# cohere
elif llm_provider == "cohere":
api_key = (
api_key or
litellm.cohere_key or
get_secret("COHERE_API_KEY")
)
# huggingface
elif llm_provider == "huggingface":
api_key = (
api_key or
litellm.huggingface_key or
get_secret("HUGGINGFACE_API_KEY")
)
# nlp_cloud
elif llm_provider == "nlp_cloud":
api_key = (
api_key or
litellm.nlp_cloud_key or
get_secret("NLP_CLOUD_API_KEY")
)
# replicate
elif llm_provider == "replicate":
api_key = (
api_key or
litellm.replicate_key or
get_secret("REPLICATE_API_KEY")
)
# together_ai
elif llm_provider == "together_ai":
api_key = (
api_key or
litellm.togetherai_api_key or
get_secret("TOGETHERAI_API_KEY") or
get_secret("TOGETHER_AI_TOKEN")
)
return api_key
def get_max_tokens(model: str):
try:
return litellm.model_cost[model]
except:
raise Exception("This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/cookbook/community-resources/max_tokens.json")
def load_test_model(
model: str,
custom_llm_provider: str = "",
api_base: str = "",
prompt: str = "",
num_calls: int = 0,
force_timeout: int = 0,
):
test_prompt = "Hey, how's it going"
test_calls = 100
if prompt:
test_prompt = prompt
if num_calls:
test_calls = num_calls
messages = [[{"role": "user", "content": test_prompt}] for _ in range(test_calls)]
start_time = time.time()
try:
litellm.batch_completion(
model=model,
messages=messages,
custom_llm_provider=custom_llm_provider,
api_base=api_base,
force_timeout=force_timeout,
)
end_time = time.time()
response_time = end_time - start_time
return {
"total_response_time": response_time,
"calls_made": 100,
"status": "success",
"exception": None,
}
except Exception as e:
end_time = time.time()
response_time = end_time - start_time
return {
"total_response_time": response_time,
"calls_made": 100,
"status": "failed",
"exception": e,
}
def validate_environment():
api_key = None
if "OPENAI_API_KEY" in os.environ:
api_key = os.getenv("OPENAI_API_KEY")
elif "ANTHROPIC_API_KEY" in os.environ:
api_key = os.getenv("ANTHROPIC_API_KEY")
elif "REPLICATE_API_KEY" in os.environ:
api_key = os.getenv("REPLICATE_API_KEY")
elif "AZURE_API_KEY" in os.environ:
api_key = os.getenv("AZURE_API_KEY")
elif "COHERE_API_KEY" in os.environ:
api_key = os.getenv("COHERE_API_KEY")
elif "TOGETHERAI_API_KEY" in os.environ:
api_key = os.getenv("TOGETHERAI_API_KEY")
elif "BASETEN_API_KEY" in os.environ:
api_key = os.getenv("BASETEN_API_KEY")
elif "AI21_API_KEY" in os.environ:
api_key = os.getenv("AI21_API_KEY")
elif "OPENROUTER_API_KEY" in os.environ:
api_key = os.getenv("OPENROUTER_API_KEY")
elif "ALEPHALPHA_API_KEY" in os.environ:
api_key = os.getenv("ALEPHALPHA_API_KEY")
return api_key
def set_callbacks(callback_list, function_id=None):
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, traceloopLogger, heliconeLogger, aispendLogger, berrispendLogger, supabaseClient, liteDebuggerClient, llmonitorLogger, promptLayerLogger, langFuseLogger, customLogger
try:
for callback in callback_list:
print_verbose(f"callback: {callback}")
if callback == "sentry":
try:
import sentry_sdk
except ImportError:
print_verbose("Package 'sentry_sdk' is missing. Installing it...")
subprocess.check_call(
[sys.executable, "-m", "pip", "install", "sentry_sdk"]
)
import sentry_sdk
sentry_sdk_instance = sentry_sdk
sentry_trace_rate = (
os.environ.get("SENTRY_API_TRACE_RATE")
if "SENTRY_API_TRACE_RATE" in os.environ
else "1.0"
)
sentry_sdk_instance.init(
dsn=os.environ.get("SENTRY_API_URL"),
traces_sample_rate=float(sentry_trace_rate),
)
capture_exception = sentry_sdk_instance.capture_exception
add_breadcrumb = sentry_sdk_instance.add_breadcrumb
elif callback == "posthog":
try:
from posthog import Posthog
except ImportError:
print_verbose("Package 'posthog' is missing. Installing it...")
subprocess.check_call(
[sys.executable, "-m", "pip", "install", "posthog"]
)
from posthog import Posthog
posthog = Posthog(
project_api_key=os.environ.get("POSTHOG_API_KEY"),
host=os.environ.get("POSTHOG_API_URL"),
)
elif callback == "slack":
try:
from slack_bolt import App
except ImportError:
print_verbose("Package 'slack_bolt' is missing. Installing it...")
subprocess.check_call(
[sys.executable, "-m", "pip", "install", "slack_bolt"]
)
from slack_bolt import App
slack_app = App(
token=os.environ.get("SLACK_API_TOKEN"),
signing_secret=os.environ.get("SLACK_API_SECRET"),
)
alerts_channel = os.environ["SLACK_API_CHANNEL"]
print_verbose(f"Initialized Slack App: {slack_app}")
elif callback == "traceloop":
traceloopLogger = TraceloopLogger()
elif callback == "helicone":
heliconeLogger = HeliconeLogger()
elif callback == "llmonitor":
llmonitorLogger = LLMonitorLogger()
elif callback == "promptlayer":
promptLayerLogger = PromptLayerLogger()
elif callback == "langfuse":
langFuseLogger = LangFuseLogger()
elif callback == "aispend":
aispendLogger = AISpendLogger()
elif callback == "berrispend":
berrispendLogger = BerriSpendLogger()
elif callback == "supabase":
print_verbose(f"instantiating supabase")
supabaseClient = Supabase()
elif callback == "lite_debugger":
print_verbose(f"instantiating lite_debugger")
if function_id:
liteDebuggerClient = LiteDebugger(email=function_id)
elif litellm.token:
liteDebuggerClient = LiteDebugger(email=litellm.token)
elif litellm.email:
liteDebuggerClient = LiteDebugger(email=litellm.email)
else:
liteDebuggerClient = LiteDebugger(email=str(uuid.uuid4()))
elif callable(callback):
customLogger = CustomLogger(callback_func=callback)
except Exception as e:
raise e
def handle_failure(exception, traceback_exception, start_time, end_time, args, kwargs):
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, aispendLogger, berrispendLogger, supabaseClient, liteDebuggerClient, llmonitorLogger
try:
# print_verbose(f"handle_failure args: {args}")
# print_verbose(f"handle_failure kwargs: {kwargs}")
success_handler = additional_details.pop("success_handler", None)
failure_handler = additional_details.pop("failure_handler", None)
additional_details["Event_Name"] = additional_details.pop(
"failed_event_name", "litellm.failed_query"
)
print_verbose(f"self.failure_callback: {litellm.failure_callback}")
for callback in litellm.failure_callback:
try:
if callback == "slack":
slack_msg = ""
if len(kwargs) > 0:
for key in kwargs:
slack_msg += f"{key}: {kwargs[key]}\n"
if len(args) > 0:
for i, arg in enumerate(args):
slack_msg += f"LiteLLM_Args_{str(i)}: {arg}"
for detail in additional_details:
slack_msg += f"{detail}: {additional_details[detail]}\n"
slack_msg += f"Traceback: {traceback_exception}"
slack_app.client.chat_postMessage(
channel=alerts_channel, text=slack_msg
)
elif callback == "sentry":
capture_exception(exception)
elif callback == "posthog":
print_verbose(
f"inside posthog, additional_details: {len(additional_details.keys())}"
)
ph_obj = {}
if len(kwargs) > 0:
ph_obj = kwargs
if len(args) > 0:
for i, arg in enumerate(args):
ph_obj["litellm_args_" + str(i)] = arg
for detail in additional_details:
ph_obj[detail] = additional_details[detail]
event_name = additional_details["Event_Name"]
print_verbose(f"ph_obj: {ph_obj}")
print_verbose(f"PostHog Event Name: {event_name}")
if "user_id" in additional_details:
posthog.capture(
additional_details["user_id"], event_name, ph_obj
)
else: # PostHog calls require a unique id to identify a user - https://posthog.com/docs/libraries/python
unique_id = str(uuid.uuid4())
posthog.capture(unique_id, event_name)
print_verbose(f"successfully logged to PostHog!")
elif callback == "berrispend":
print_verbose("reaches berrispend for logging!")
model = args[0] if len(args) > 0 else kwargs["model"]
messages = args[1] if len(args) > 1 else kwargs["messages"]
result = {
"model": model,
"created": time.time(),
"error": traceback_exception,
"usage": {
"prompt_tokens": prompt_token_calculator(
model, messages=messages
),
"completion_tokens": 0,
},
}
berrispendLogger.log_event(
model=model,
messages=messages,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
elif callback == "aispend":
print_verbose("reaches aispend for logging!")
model = args[0] if len(args) > 0 else kwargs["model"]
messages = args[1] if len(args) > 1 else kwargs["messages"]
result = {
"model": model,
"created": time.time(),
"usage": {
"prompt_tokens": prompt_token_calculator(
model, messages=messages
),
"completion_tokens": 0,
},
}
aispendLogger.log_event(
model=model,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
elif callback == "llmonitor":
print_verbose("reaches llmonitor for logging error!")
model = args[0] if len(args) > 0 else kwargs["model"]
input = (
args[1]
if len(args) > 1
else kwargs.get("messages", kwargs.get("input", None))
)
type = "embed" if "input" in kwargs else "llm"
llmonitorLogger.log_event(
type=type,
event="error",
user_id=litellm._thread_context.user,
model=model,
input=input,
error=traceback_exception,
run_id=kwargs["litellm_call_id"],
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
elif callback == "supabase":
print_verbose("reaches supabase for logging!")
print_verbose(f"supabaseClient: {supabaseClient}")
model = args[0] if len(args) > 0 else kwargs["model"]
messages = args[1] if len(args) > 1 else kwargs["messages"]
result = {
"model": model,
"created": time.time(),
"error": traceback_exception,
"usage": {
"prompt_tokens": prompt_token_calculator(
model, messages=messages
),
"completion_tokens": 0,
},
}
supabaseClient.log_event(
model=model,
messages=messages,
end_user=litellm._thread_context.user,
response_obj=result,
start_time=start_time,
end_time=end_time,
litellm_call_id=kwargs["litellm_call_id"],
print_verbose=print_verbose,
)
except:
print_verbose(
f"Error Occurred while logging failure: {traceback.format_exc()}"
)
pass
if failure_handler and callable(failure_handler):
call_details = {
"exception": exception,
"additional_details": additional_details,
}
failure_handler(call_details)
pass
except Exception as e:
# LOGGING
exception_logging(logger_fn=user_logger_fn, exception=e)
pass
def handle_success(args, kwargs, result, start_time, end_time):
global heliconeLogger, aispendLogger, supabaseClient, liteDebuggerClient, llmonitorLogger
try:
model = args[0] if len(args) > 0 else kwargs["model"]
input = (
args[1]
if len(args) > 1
else kwargs.get("messages", kwargs.get("input", None))
)
success_handler = additional_details.pop("success_handler", None)
failure_handler = additional_details.pop("failure_handler", None)
additional_details["Event_Name"] = additional_details.pop(
"successful_event_name", "litellm.succes_query"
)
for callback in litellm.success_callback:
try:
if callback == "posthog":
ph_obj = {}
for detail in additional_details:
ph_obj[detail] = additional_details[detail]
event_name = additional_details["Event_Name"]
if "user_id" in additional_details:
posthog.capture(
additional_details["user_id"], event_name, ph_obj
)
else: # PostHog calls require a unique id to identify a user - https://posthog.com/docs/libraries/python
unique_id = str(uuid.uuid4())
posthog.capture(unique_id, event_name, ph_obj)
pass
elif callback == "slack":
slack_msg = ""
for detail in additional_details:
slack_msg += f"{detail}: {additional_details[detail]}\n"
slack_app.client.chat_postMessage(
channel=alerts_channel, text=slack_msg
)
elif callback == "helicone":
print_verbose("reaches helicone for logging!")
model = args[0] if len(args) > 0 else kwargs["model"]
messages = args[1] if len(args) > 1 else kwargs["messages"]
heliconeLogger.log_success(
model=model,
messages=messages,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
elif callback == "llmonitor":
print_verbose("reaches llmonitor for logging!")
model = args[0] if len(args) > 0 else kwargs["model"]
input = (
args[1]
if len(args) > 1
else kwargs.get("messages", kwargs.get("input", None))
)
# if contains input, it's 'embedding', otherwise 'llm'
type = "embed" if "input" in kwargs else "llm"
llmonitorLogger.log_event(
type=type,
event="end",
model=model,
input=input,
user_id=litellm._thread_context.user,
response_obj=result,
start_time=start_time,
end_time=end_time,
run_id=kwargs["litellm_call_id"],
print_verbose=print_verbose,
)
elif callback == "langfuse":
print_verbose("reaches langfuse for logging!")
langFuseLogger.log_event(
kwargs=kwargs,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
elif callback == "aispend":
print_verbose("reaches aispend for logging!")
model = args[0] if len(args) > 0 else kwargs["model"]
aispendLogger.log_event(
model=model,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
elif callback == "supabase":
print_verbose("reaches supabase for logging!")
model = args[0] if len(args) > 0 else kwargs["model"]
messages = (
args[1]
if len(args) > 1
else kwargs.get("messages", {"role": "user", "content": ""})
)
print(f"supabaseClient: {supabaseClient}")
supabaseClient.log_event(
model=model,
messages=messages,
end_user=litellm._thread_context.user,
response_obj=result,
start_time=start_time,
end_time=end_time,
litellm_call_id=kwargs["litellm_call_id"],
print_verbose=print_verbose,
)
elif callable(callback): # custom logger functions
customLogger.log_event(
kwargs=kwargs,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
except Exception as e:
# LOGGING
exception_logging(logger_fn=user_logger_fn, exception=e)
print_verbose(
f"[Non-Blocking] Success Callback Error - {traceback.format_exc()}"
)
pass
if success_handler and callable(success_handler):
success_handler(args, kwargs)
pass
except Exception as e:
# LOGGING
exception_logging(logger_fn=user_logger_fn, exception=e)
print_verbose(
f"[Non-Blocking] Success Callback Error - {traceback.format_exc()}"
)
pass
def acreate(*args, **kwargs): ## Thin client to handle the acreate langchain call
return litellm.acompletion(*args, **kwargs)
def prompt_token_calculator(model, messages):
# use tiktoken or anthropic's tokenizer depending on the model
text = " ".join(message["content"] for message in messages)
num_tokens = 0
if "claude" in model:
try:
import anthropic
except:
Exception("Anthropic import failed please run `pip install anthropic`")
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
anthropic = Anthropic()
num_tokens = anthropic.count_tokens(text)
else:
num_tokens = len(encoding.encode(text))
return num_tokens
def valid_model(model):
try:
# for a given model name, check if the user has the right permissions to access the model
if (
model in litellm.open_ai_chat_completion_models
or model in litellm.open_ai_text_completion_models
):
openai.Model.retrieve(model)
else:
messages = [{"role": "user", "content": "Hello World"}]
litellm.completion(model=model, messages=messages)
except:
raise InvalidRequestError(message="", model=model, llm_provider="")
# check valid api key
def check_valid_key(model: str, api_key: str):
# returns True if key is valid for the model
# returns False if key is invalid for the model
messages = [{"role": "user", "content": "Hey, how's it going?"}]
try:
litellm.completion(model=model, messages=messages, api_key=api_key, max_tokens=10)
return True
except AuthenticationError as e:
return False
except Exception as e:
return False
# integration helper function
def modify_integration(integration_name, integration_params):
global supabaseClient
if integration_name == "supabase":
if "table_name" in integration_params:
Supabase.supabase_table_name = integration_params["table_name"]
# custom prompt helper function
def register_prompt_template(model: str, roles: dict, initial_prompt_value: str = "", final_prompt_value: str = ""):
"""
Example usage:
```
import litellm
litellm.register_prompt_template(
model="llama-2",
roles={
"system": {
"pre_message": "[INST] <>\n",
"post_message": "\n<>\n [/INST]\n"
},
"user": { # follow this format https://github.com/facebookresearch/llama/blob/77062717054710e352a99add63d160274ce670c6/llama/generation.py#L348
"pre_message": "[INST] ",
"post_message": " [/INST]\n"
},
"assistant": {
"post_message": "\n" # follows this - https://replicate.com/blog/how-to-prompt-llama
}
}
)
```
"""
litellm.custom_prompt_dict[model] = {
"roles": roles,
"initial_prompt_value": initial_prompt_value,
"final_prompt_value": final_prompt_value
}
return litellm.custom_prompt_dict
####### [BETA] HOSTED PRODUCT ################ - https://docs.litellm.ai/docs/debugging/hosted_debugging
def get_all_keys(llm_provider=None):
try:
global last_fetched_at_keys
# if user is using hosted product -> instantiate their env with their hosted api keys - refresh every 5 minutes
print_verbose(f"Reaches get all keys, llm_provider: {llm_provider}")
user_email = (
os.getenv("LITELLM_EMAIL")
or litellm.email
or litellm.token
or os.getenv("LITELLM_TOKEN")
)
if user_email:
time_delta = 0
if last_fetched_at_keys != None:
current_time = time.time()
time_delta = current_time - last_fetched_at_keys
if (
time_delta > 300 or last_fetched_at_keys == None or llm_provider
): # if the llm provider is passed in , assume this happening due to an AuthError for that provider
# make the api call
last_fetched_at = time.time()
print_verbose(f"last_fetched_at: {last_fetched_at}")
response = requests.post(
url="http://api.litellm.ai/get_all_keys",
headers={"content-type": "application/json"},
data=json.dumps({"user_email": user_email}),
)
print_verbose(f"get model key response: {response.text}")
data = response.json()
# update model list
for key, value in data[
"model_keys"
].items(): # follows the LITELLM API KEY format - _API_KEY - e.g. HUGGINGFACE_API_KEY
os.environ[key] = value
# set model alias map
for model_alias, value in data["model_alias_map"].items():
litellm.model_alias_map[model_alias] = value
return "it worked!"
return None
return None
except:
print_verbose(
f"[Non-Blocking Error] get_all_keys error - {traceback.format_exc()}"
)
pass
def get_model_list():
global last_fetched_at
try:
# if user is using hosted product -> get their updated model list
user_email = (
os.getenv("LITELLM_EMAIL")
or litellm.email
or litellm.token
or os.getenv("LITELLM_TOKEN")
)
if user_email:
# make the api call
last_fetched_at = time.time()
print(f"last_fetched_at: {last_fetched_at}")
response = requests.post(
url="http://api.litellm.ai/get_model_list",
headers={"content-type": "application/json"},
data=json.dumps({"user_email": user_email}),
)
print_verbose(f"get_model_list response: {response.text}")
data = response.json()
# update model list
model_list = data["model_list"]
# # check if all model providers are in environment
# model_providers = data["model_providers"]
# missing_llm_provider = None
# for item in model_providers:
# if f"{item.upper()}_API_KEY" not in os.environ:
# missing_llm_provider = item
# break
# # update environment - if required
# threading.Thread(target=get_all_keys, args=(missing_llm_provider)).start()
return model_list
return [] # return empty list by default
except:
print_verbose(
f"[Non-Blocking Error] get_model_list error - {traceback.format_exc()}"
)
####### EXCEPTION MAPPING ################
def exception_type(
model,
original_exception,
custom_llm_provider,
completion_kwargs={},
):
global user_logger_fn, liteDebuggerClient
exception_mapping_worked = False
if litellm.set_verbose == True:
litellm.error_logs['EXCEPTION'] = original_exception
litellm.error_logs['KWARGS'] = completion_kwargs
try:
# code to show users their litellm error dashboard
import urllib.parse
import json
for log_key in litellm.error_logs:
current_logs = litellm.error_logs[log_key]
if type(current_logs) == dict:
filtered_error_logs = {key: str(value) for key, value in current_logs.items()}
litellm.error_logs[log_key] = filtered_error_logs
else:
litellm.error_logs[log_key] = str(current_logs)
# Convert the filtered_error_logs dictionary to a JSON string
error_logs_json = json.dumps(litellm.error_logs)
# URL-encode the JSON data
encoded_data = urllib.parse.quote(error_logs_json)
print("👉 view error logs:")
print("\033[91m" + '\033[4m' + 'https://logs.litellm.ai/?data=' + str(encoded_data) + "\033[0m")
except:
pass
try:
if isinstance(original_exception, OriginalError):
# Handle the OpenAIError
exception_mapping_worked = True
if model in litellm.openrouter_models:
if original_exception.http_status == 413:
raise InvalidRequestError(
message=str(original_exception),
model=model,
llm_provider="openrouter"
)
original_exception.llm_provider = "openrouter"
elif custom_llm_provider == "azure":
original_exception.llm_provider = "azure"
else:
original_exception.llm_provider = "openai"
if "This model's maximum context length is" in original_exception._message:
raise ContextWindowExceededError(
message=str(original_exception),
model=model,
llm_provider=original_exception.llm_provider
)
raise original_exception
elif model:
error_str = str(original_exception)
if isinstance(original_exception, BaseException):
exception_type = type(original_exception).__name__
else:
exception_type = ""
if "claude" in model: # one of the anthropics
if hasattr(original_exception, "message"):
if "prompt is too long" in original_exception.message:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=original_exception.message,
model=model,
llm_provider="anthropic"
)
if hasattr(original_exception, "status_code"):
print_verbose(f"status_code: {original_exception.status_code}")
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"AnthropicException - {original_exception.message}",
llm_provider="anthropic",
model=model
)
elif original_exception.status_code == 400:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"AnthropicException - {original_exception.message}",
model=model,
llm_provider="anthropic",
)
elif original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"AnthropicException - {original_exception.message}",
model=model,
llm_provider="anthropic"
)
elif original_exception.status_code == 413:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"AnthropicException - {original_exception.message}",
model=model,
llm_provider="anthropic",
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"AnthropicException - {original_exception.message}",
llm_provider="anthropic",
model=model
)
elif original_exception.status_code == 500:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"AnthropicException - {original_exception.message}",
llm_provider="anthropic",
model=model
)
else:
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"AnthropicException - {original_exception.message}",
llm_provider="anthropic",
model=model
)
elif "replicate" in model:
if "Incorrect authentication token" in error_str:
exception_mapping_worked = True
raise AuthenticationError(
message=f"ReplicateException - {error_str}",
llm_provider="replicate",
model=model
)
elif "input is too long" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"ReplicateException - {error_str}",
model=model,
llm_provider="replicate",
)
elif exception_type == "ModelError":
exception_mapping_worked = True
raise InvalidRequestError(
message=f"ReplicateException - {error_str}",
model=model,
llm_provider="replicate",
)
elif "Request was throttled" in error_str:
exception_mapping_worked = True
raise RateLimitError(
message=f"ReplicateException - {error_str}",
llm_provider="replicate",
model=model
)
elif hasattr(original_exception, "status_code"):
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"ReplicateException - {original_exception.message}",
llm_provider="replicate",
model=model
)
elif original_exception.status_code == 400:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"ReplicateException - {original_exception.message}",
model=model,
llm_provider="replicate",
)
elif original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"ReplicateException - {original_exception.message}",
model=model,
llm_provider="replicate"
)
elif original_exception.status_code == 413:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"ReplicateException - {original_exception.message}",
model=model,
llm_provider="replicate",
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"ReplicateException - {original_exception.message}",
llm_provider="replicate",
model=model
)
elif original_exception.status_code == 500:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"ReplicateException - {original_exception.message}",
llm_provider="replicate",
model=model
)
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"ReplicateException - {original_exception.message}",
llm_provider="replicate",
model=model
)
elif model in litellm.cohere_models or custom_llm_provider == "cohere": # Cohere
if (
"invalid api token" in error_str
or "No API key provided." in error_str
):
exception_mapping_worked = True
raise AuthenticationError(
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
model=model
)
elif "too many tokens" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"CohereException - {original_exception.message}",
model=model,
llm_provider="cohere",
)
elif hasattr(original_exception, "status_code"):
if original_exception.status_code == 400 or original_exception.status_code == 498:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
model=model
)
elif original_exception.status_code == 500:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
model=model
)
elif (
"CohereConnectionError" in exception_type
): # cohere seems to fire these errors when we load test it (1k+ messages / min)
exception_mapping_worked = True
raise RateLimitError(
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
model=model
)
elif "invalid type:" in error_str:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
model=model
)
elif "Unexpected server error" in error_str:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
model=model
)
else:
if hasattr(original_exception, "status_code"):
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"CohereException - {original_exception.message}",
llm_provider="cohere",
model=model
)
raise original_exception
elif custom_llm_provider == "huggingface":
if "length limit exceeded" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=error_str,
model=model,
llm_provider="huggingface"
)
if hasattr(original_exception, "status_code"):
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"HuggingfaceException - {original_exception.message}",
llm_provider="huggingface",
model=model
)
elif original_exception.status_code == 400:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"HuggingfaceException - {original_exception.message}",
model=model,
llm_provider="huggingface",
)
elif original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"HuggingfaceException - {original_exception.message}",
model=model,
llm_provider="huggingface"
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"HuggingfaceException - {original_exception.message}",
llm_provider="huggingface",
model=model
)
else:
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"HuggingfaceException - {original_exception.message}",
llm_provider="huggingface",
model=model
)
elif custom_llm_provider == "ai21":
if hasattr(original_exception, "message"):
if "Prompt has too many tokens" in original_exception.message:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"AI21Exception - {original_exception.message}",
model=model,
llm_provider="ai21"
)
if hasattr(original_exception, "status_code"):
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"AI21Exception - {original_exception.message}",
llm_provider="ai21",
model=model
)
elif original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"AI21Exception - {original_exception.message}",
model=model,
llm_provider="ai21"
)
if original_exception.status_code == 422:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"AI21Exception - {original_exception.message}",
model=model,
llm_provider="ai21",
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"AI21Exception - {original_exception.message}",
llm_provider="ai21",
)
else:
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"AI21Exception - {original_exception.message}",
llm_provider="ai21",
model=model
)
elif model in litellm.nlp_cloud_models or custom_llm_provider == "nlp_cloud":
if "detail" in error_str:
if "Input text length should not exceed" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"NLPCloudException - {error_str}",
model=model,
llm_provider="nlp_cloud"
)
elif "value is not a valid" in error_str:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"NLPCloudException - {error_str}",
model=model,
llm_provider="nlp_cloud"
)
else:
exception_mapping_worked = True
raise APIError(
status_code=500,
message=f"NLPCloudException - {error_str}",
model=model,
llm_provider="nlp_cloud"
)
if hasattr(original_exception, "status_code"): # https://docs.nlpcloud.com/?shell#errors
if original_exception.status_code == 400 or original_exception.status_code == 406 or original_exception.status_code == 413 or original_exception.status_code == 422:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"NLPCloudException - {original_exception.message}",
llm_provider="nlp_cloud",
model=model
)
elif original_exception.status_code == 401 or original_exception.status_code == 403:
exception_mapping_worked = True
raise AuthenticationError(
message=f"NLPCloudException - {original_exception.message}",
llm_provider="nlp_cloud",
model=model
)
elif original_exception.status_code == 522 or original_exception.status_code == 524:
exception_mapping_worked = True
raise Timeout(
message=f"NLPCloudException - {original_exception.message}",
model=model,
llm_provider="nlp_cloud"
)
elif original_exception.status_code == 429 or original_exception.status_code == 402:
exception_mapping_worked = True
raise RateLimitError(
message=f"NLPCloudException - {original_exception.message}",
llm_provider="nlp_cloud",
)
elif original_exception.status_code == 500 or original_exception.status_code == 503:
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"NLPCloudException - {original_exception.message}",
llm_provider="nlp_cloud",
model=model
)
elif original_exception.status_code == 504 or original_exception.status_code == 520:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"NLPCloudException - {original_exception.message}",
model=model,
llm_provider="nlp_cloud"
)
else:
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"NLPCloudException - {original_exception.message}",
llm_provider="nlp_cloud",
model=model
)
elif custom_llm_provider == "together_ai":
error_response = json.loads(error_str)
if "error" in error_response and "`inputs` tokens + `max_new_tokens` must be <=" in error_response["error"]:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"TogetherAIException - {error_response['error']}",
model=model,
llm_provider="together_ai"
)
elif "error" in error_response and "invalid private key" in error_response["error"]:
exception_mapping_worked = True
raise AuthenticationError(
message=f"TogetherAIException - {error_response['error']}",
llm_provider="together_ai",
model=model
)
elif "error" in error_response and "INVALID_ARGUMENT" in error_response["error"]:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"TogetherAIException - {error_response['error']}",
model=model,
llm_provider="together_ai"
)
elif "error_type" in error_response and error_response["error_type"] == "validation":
exception_mapping_worked = True
raise InvalidRequestError(
message=f"TogetherAIException - {error_response['error']}",
model=model,
llm_provider="together_ai"
)
elif original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"TogetherAIException - {original_exception.message}",
model=model,
llm_provider="together_ai"
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"TogetherAIException - {original_exception.message}",
llm_provider="together_ai",
model=model
)
else:
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"TogetherAIException - {original_exception.message}",
llm_provider="together_ai",
model=model
)
elif model in litellm.aleph_alpha_models:
if "This is longer than the model's maximum context length" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"AlephAlphaException - {original_exception.message}",
llm_provider="aleph_alpha",
model=model
)
elif hasattr(original_exception, "status_code"):
print(f"status code: {original_exception.status_code}")
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"AlephAlphaException - {original_exception.message}",
llm_provider="aleph_alpha",
model=model
)
elif original_exception.status_code == 400:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"AlephAlphaException - {original_exception.message}",
llm_provider="aleph_alpha",
model=model
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"AlephAlphaException - {original_exception.message}",
llm_provider="aleph_alpha",
model=model
)
elif original_exception.status_code == 500:
exception_mapping_worked = True
raise ServiceUnavailableError(
message=f"AlephAlphaException - {original_exception.message}",
llm_provider="aleph_alpha",
model=model
)
raise original_exception
raise original_exception
elif custom_llm_provider == "vllm":
if hasattr(original_exception, "status_code"):
if original_exception.status_code == 0:
exception_mapping_worked = True
raise APIConnectionError(
message=f"VLLMException - {original_exception.message}",
llm_provider="vllm",
model=model
)
elif custom_llm_provider == "ollama":
if "no attribute 'async_get_ollama_response_stream" in error_str:
raise ImportError("Import error - trying to use async for ollama. import async_generator failed. Try 'pip install async_generator'")
raise original_exception
except Exception as e:
# LOGGING
exception_logging(
logger_fn=user_logger_fn,
additional_args={
"exception_mapping_worked": exception_mapping_worked,
"original_exception": original_exception,
},
exception=e,
)
## AUTH ERROR
if isinstance(e, AuthenticationError) and (
litellm.email or "LITELLM_EMAIL" in os.environ
):
threading.Thread(target=get_all_keys, args=(e.llm_provider,)).start()
# don't let an error with mapping interrupt the user from receiving an error from the llm api calls
if exception_mapping_worked:
raise e
else:
raise original_exception
####### CRASH REPORTING ################
def safe_crash_reporting(model=None, exception=None, custom_llm_provider=None):
data = {
"model": model,
"exception": str(exception),
"custom_llm_provider": custom_llm_provider,
}
threading.Thread(target=litellm_telemetry, args=(data,)).start()
def get_or_generate_uuid():
temp_dir = os.path.join(os.path.abspath(os.sep), "tmp")
uuid_file = os.path.join(temp_dir, "litellm_uuid.txt")
try:
# Try to open the file and load the UUID
with open(uuid_file, "r") as file:
uuid_value = file.read()
if uuid_value:
uuid_value = uuid_value.strip()
else:
raise FileNotFoundError
except FileNotFoundError:
# Generate a new UUID if the file doesn't exist or is empty
try:
new_uuid = uuid.uuid4()
uuid_value = str(new_uuid)
with open(uuid_file, "w") as file:
file.write(uuid_value)
except: # if writing to tmp/litellm_uuid.txt then retry writing to litellm_uuid.txt
try:
new_uuid = uuid.uuid4()
uuid_value = str(new_uuid)
with open("litellm_uuid.txt", "w") as file:
file.write(uuid_value)
except: # if this 3rd attempt fails just pass
# Good first issue for someone to improve this function :)
return
except:
# [Non-Blocking Error]
return
return uuid_value
def litellm_telemetry(data):
# Load or generate the UUID
uuid_value = ""
try:
uuid_value = get_or_generate_uuid()
except:
uuid_value = str(uuid.uuid4())
try:
# Prepare the data to send to litellm logging api
payload = {
"uuid": uuid_value,
"data": data,
"version:": importlib.metadata.version("litellm"),
}
# Make the POST request to litellm logging api
response = requests.post(
"https://litellm.berri.ai/logging",
headers={"Content-Type": "application/json"},
json=payload,
)
response.raise_for_status() # Raise an exception for HTTP errors
except:
# [Non-Blocking Error]
return
######### Secret Manager ############################
# checks if user has passed in a secret manager client
# if passed in then checks the secret there
def get_secret(secret_name):
if litellm.secret_manager_client != None:
# TODO: check which secret manager is being used
# currently only supports Infisical
try:
secret = litellm.secret_manager_client.get_secret(secret_name).secret_value
except:
secret = None
return secret
else:
return os.environ.get(secret_name)
######## Streaming Class ############################
# wraps the completion stream to return the correct format for the model
# replicate/anthropic/cohere
class CustomStreamWrapper:
def __init__(self, completion_stream, model, custom_llm_provider=None, logging_obj=None):
self.model = model
self.custom_llm_provider = custom_llm_provider
self.logging_obj = logging_obj
self.completion_stream = completion_stream
self.sent_first_chunk = False
if self.logging_obj:
# Log the type of the received item
self.logging_obj.post_call(str(type(completion_stream)))
def __iter__(self):
return self
def __aiter__(self):
return self
def logging(self, text):
if self.logging_obj:
self.logging_obj.post_call(text)
def handle_anthropic_chunk(self, chunk):
str_line = chunk.decode("utf-8") # Convert bytes to string
if str_line.startswith("data:"):
data_json = json.loads(str_line[5:])
return data_json.get("completion", "")
return ""
def handle_together_ai_chunk(self, chunk):
chunk = chunk.decode("utf-8")
text_index = chunk.find('"text":"') # this checks if text: exists
text_start = text_index + len('"text":"')
text_end = chunk.find('"}', text_start)
if text_index != -1 and text_end != -1:
extracted_text = chunk[text_start:text_end]
return extracted_text
else:
return ""
def handle_huggingface_chunk(self, chunk):
chunk = chunk.decode("utf-8")
if chunk.startswith("data:"):
data_json = json.loads(chunk[5:])
if "token" in data_json and "text" in data_json["token"]:
text = data_json["token"]["text"]
if "meta-llama/Llama-2" in self.model: #clean eos tokens like from the returned output text
if any(token in text for token in llama_2_special_tokens):
text = text.replace("", "").replace("", "")
return text
else:
return ""
return ""
def handle_ai21_chunk(self, chunk):
chunk = chunk.decode("utf-8")
data_json = json.loads(chunk)
try:
return data_json["completions"][0]["data"]["text"]
except:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_nlp_cloud_chunk(self, chunk):
chunk = chunk.decode("utf-8")
data_json = json.loads(chunk)
try:
print(f"data json: {data_json}")
return data_json["generated_text"]
except:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_aleph_alpha_chunk(self, chunk):
chunk = chunk.decode("utf-8")
data_json = json.loads(chunk)
try:
return data_json["completions"][0]["completion"]
except:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_cohere_chunk(self, chunk):
chunk = chunk.decode("utf-8")
data_json = json.loads(chunk)
try:
return data_json["text"]
except:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_openai_text_completion_chunk(self, chunk):
try:
print(f"chunk: {chunk}")
return chunk["choices"][0]["text"]
except:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_openai_chat_completion_chunk(self, chunk):
try:
return chunk["choices"][0]["delta"]["content"]
except:
return ""
def handle_baseten_chunk(self, chunk):
try:
chunk = chunk.decode("utf-8")
if len(chunk) > 0:
if chunk.startswith("data:"):
data_json = json.loads(chunk[5:])
if "token" in data_json and "text" in data_json["token"]:
return data_json["token"]["text"]
else:
return ""
data_json = json.loads(chunk)
if "model_output" in data_json:
if isinstance(data_json["model_output"], dict) and "data" in data_json["model_output"] and isinstance(data_json["model_output"]["data"], list):
return data_json["model_output"]["data"][0]
elif isinstance(data_json["model_output"], str):
return data_json["model_output"]
elif "completion" in data_json and isinstance(data_json["completion"], str):
return data_json["completion"]
else:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
else:
return ""
else:
return ""
except:
traceback.print_exc()
return ""
def handle_bedrock_stream(self):
if self.completion_stream:
event = next(self.completion_stream)
chunk = event.get('chunk')
if chunk:
chunk_data = json.loads(chunk.get('bytes').decode())
return chunk_data['outputText']
return ""
## needs to handle the empty string case (even starting chunk can be an empty string)
def __next__(self):
model_response = ModelResponse(stream=True, model=self.model)
try:
while True: # loop until a non-empty string is found
# return this for all models
completion_obj = {"content": ""}
if self.custom_llm_provider and self.custom_llm_provider == "anthropic":
chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_anthropic_chunk(chunk)
elif self.model == "replicate" or self.custom_llm_provider == "replicate":
chunk = next(self.completion_stream)
completion_obj["content"] = chunk
elif (
self.custom_llm_provider and self.custom_llm_provider == "together_ai"):
chunk = next(self.completion_stream)
text_data = self.handle_together_ai_chunk(chunk)
if text_data == "":
return self.__next__()
completion_obj["content"] = text_data
elif self.custom_llm_provider and self.custom_llm_provider == "huggingface":
chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_huggingface_chunk(chunk)
elif self.custom_llm_provider and self.custom_llm_provider == "baseten": # baseten doesn't provide streaming
chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_baseten_chunk(chunk)
elif self.custom_llm_provider and self.custom_llm_provider == "ai21": #ai21 doesn't provide streaming
chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_ai21_chunk(chunk)
elif self.custom_llm_provider and self.custom_llm_provider == "vllm":
chunk = next(self.completion_stream)
completion_obj["content"] = chunk[0].outputs[0].text
elif self.custom_llm_provider and self.custom_llm_provider == "aleph-alpha": #aleph alpha doesn't provide streaming
chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_aleph_alpha_chunk(chunk)
elif self.custom_llm_provider and self.custom_llm_provider == "text-completion-openai":
chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_openai_text_completion_chunk(chunk)
elif self.model in litellm.nlp_cloud_models or self.custom_llm_provider == "nlp_cloud":
chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_nlp_cloud_chunk(chunk)
elif self.model in (litellm.vertex_chat_models + litellm.vertex_code_chat_models + litellm.vertex_text_models + litellm.vertex_code_text_models):
chunk = next(self.completion_stream)
completion_obj["content"] = str(chunk)
elif self.custom_llm_provider == "cohere":
chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_cohere_chunk(chunk)
elif self.custom_llm_provider == "bedrock":
completion_obj["content"] = self.handle_bedrock_stream()
else: # openai chat/azure models
chunk = next(self.completion_stream)
model_response = chunk
# LOGGING
threading.Thread(target=self.logging_obj.success_handler, args=(completion_obj,)).start()
return model_response
# LOGGING
threading.Thread(target=self.logging_obj.success_handler, args=(completion_obj,)).start()
model_response.model = self.model
if len(completion_obj["content"]) > 0: # cannot set content of an OpenAI Object to be an empty string
if self.sent_first_chunk == False:
completion_obj["role"] = "assistant"
self.sent_first_chunk = True
model_response.choices[0].delta = Delta(**completion_obj)
return model_response
except StopIteration:
raise StopIteration
except Exception as e:
model_response.choices[0].finish_reason = "stop"
return model_response
async def __anext__(self):
try:
return next(self)
except StopIteration:
raise StopAsyncIteration
def mock_completion_streaming_obj(model_response, mock_response, model):
for i in range(0, len(mock_response), 3):
completion_obj = {"role": "assistant", "content": mock_response[i: i+3]}
model_response.choices[0].delta = completion_obj
yield model_response
########## Reading Config File ############################
def read_config_args(config_path) -> dict:
try:
import os
current_path = os.getcwd()
with open(config_path, "r") as config_file:
config = json.load(config_file)
# read keys/ values from config file and return them
return config
except Exception as e:
print("An error occurred while reading config:", str(e))
raise e
########## experimental completion variants ############################
def completion_with_config(*args, config: Union[dict, str], **kwargs):
if config is not None:
if isinstance(config, str):
config = read_config_args(config)
elif isinstance(config, dict):
config = config
else:
raise Exception("Config path must be a string or a dictionary.")
else:
raise Exception("Config path not passed in.")
## load the completion config
completion_config = None
if config["function"] == "completion":
completion_config = config
if completion_config is None:
raise Exception("No completion config in the config file")
models_with_config = completion_config["model"].keys()
model = args[0] if len(args) > 0 else kwargs["model"]
messages = args[1] if len(args) > 1 else kwargs["messages"]
## Default fallback models
fallback_models = completion_config.get("default_fallback_models")
try:
if model in models_with_config:
## Moderation check
if completion_config["model"][model].get("needs_moderation"):
input = " ".join(message["content"] for message in messages)
response = litellm.moderation(input=input)
flagged = response["results"][0]["flagged"]
if flagged:
raise Exception("This response was flagged as inappropriate")
## Model-specific Error Handling
error_handling = None
if completion_config["model"][model].get("error_handling"):
error_handling = completion_config["model"][model]["error_handling"]
try:
response = litellm.completion(*args, **kwargs)
return response
except Exception as e:
exception_name = type(e).__name__
fallback_model = None
if error_handling and exception_name in error_handling:
error_handler = error_handling[exception_name]
# either switch model or api key
fallback_model = error_handler.get("fallback_model", None)
if fallback_model:
kwargs["model"] = fallback_model
return litellm.completion(*args, **kwargs)
raise e
else:
return litellm.completion(*args, **kwargs)
except Exception as e:
if fallback_models:
model = fallback_models.pop(0)
return completion_with_fallbacks(model=model, messages=messages, fallbacks=fallback_models)
raise e
def get_model_split_test(models, completion_call_id):
global last_fetched_at
try:
# make the api call
last_fetched_at = time.time()
print(f"last_fetched_at: {last_fetched_at}")
response = requests.post(
#http://api.litellm.ai
url="http://api.litellm.ai/get_model_split_test", # get the updated dict from table or update the table with the dict
headers={"content-type": "application/json"},
data=json.dumps({"completion_call_id": completion_call_id, "models": models}),
)
print_verbose(f"get_model_list response: {response.text}")
data = response.json()
# update model list
split_test_models = data["split_test_models"]
model_configs = data.get("model_configs", {})
# update environment - if required
threading.Thread(target=get_all_keys, args=()).start()
return split_test_models, model_configs
except:
print_verbose(
f"[Non-Blocking Error] get_all_keys error - {traceback.format_exc()}"
)
def completion_with_split_tests(models={}, messages=[], use_client=False, override_client=False, **kwargs):
"""
Example Usage:
models = {
"gpt-4": 0.7,
"huggingface/wizard-coder": 0.3
}
messages = [{ "content": "Hello, how are you?","role": "user"}]
completion_with_split_tests(models=models, messages=messages)
"""
import random
model_configs = {}
if use_client and not override_client:
if "id" not in kwargs or kwargs["id"] is None:
kwargs["id"] = str(uuid.uuid4())
#raise ValueError("Please tag this completion call, if you'd like to update it's split test values through the UI. - eg. `completion_with_split_tests(.., id=1234)`.")
# get the most recent model split list from server
models, model_configs = get_model_split_test(models=models, completion_call_id=kwargs["id"])
try:
selected_llm = random.choices(list(models.keys()), weights=list(models.values()))[0]
except:
traceback.print_exc()
raise ValueError("""models does not follow the required format - {'model_name': 'split_percentage'}, e.g. {'gpt-4': 0.7, 'huggingface/wizard-coder': 0.3}""")
# use dynamic model configs if users set
if model_configs!={}:
selected_model_configs = model_configs.get(selected_llm, {})
if "prompt" in selected_model_configs: # special case, add this to messages as system prompt
messages.append({"role": "system", "content": selected_model_configs["prompt"]})
selected_model_configs.pop("prompt")
for param_name in selected_model_configs:
if param_name == "temperature":
kwargs[param_name] = float(selected_model_configs[param_name])
elif param_name == "max_tokens":
kwargs[param_name] = int(selected_model_configs[param_name])
else:
kwargs[param_name] = selected_model_configs[param_name]
return litellm.completion(model=selected_llm, messages=messages, use_client=use_client, **kwargs)
def completion_with_fallbacks(**kwargs):
response = None
rate_limited_models = set()
model_expiration_times = {}
start_time = time.time()
fallbacks = [kwargs["model"]] + kwargs["fallbacks"]
del kwargs["fallbacks"] # remove fallbacks so it's not recursive
while response == None and time.time() - start_time < 45:
for model in fallbacks:
# loop thru all models
try:
if (
model in rate_limited_models
): # check if model is currently cooling down
if (
model_expiration_times.get(model)
and time.time() >= model_expiration_times[model]
):
rate_limited_models.remove(
model
) # check if it's been 60s of cool down and remove model
else:
continue # skip model
# delete model from kwargs if it exists
if kwargs.get("model"):
del kwargs["model"]
response = litellm.completion(**kwargs, model=model)
if response != None:
return response
except Exception as e:
print(f"got exception {e} for model {model}")
rate_limited_models.add(model)
model_expiration_times[model] = (
time.time() + 60
) # cool down this selected model
# print(f"rate_limited_models {rate_limited_models}")
pass
return response
def process_system_message(system_message, max_tokens, model):
system_message_event = {"role": "system", "content": system_message}
system_message_tokens = get_token_count(system_message_event, model)
if system_message_tokens > max_tokens:
print_verbose("`tokentrimmer`: Warning, system message exceeds token limit. Trimming...")
# shorten system message to fit within max_tokens
new_system_message = shorten_message_to_fit_limit(system_message_event, max_tokens, model)
system_message_tokens = get_token_count(new_system_message, model)
return system_message_event, max_tokens - system_message_tokens
def process_messages(messages, max_tokens, model):
# Process messages from older to more recent
messages = messages[::-1]
final_messages = []
for message in messages:
final_messages = attempt_message_addition(final_messages, message, max_tokens, model)
return final_messages
def attempt_message_addition(final_messages, message, max_tokens, model):
temp_messages = [message] + final_messages
temp_message_tokens = get_token_count(messages=temp_messages, model=model)
if temp_message_tokens <= max_tokens:
return temp_messages
# if temp_message_tokens > max_tokens, try shortening temp_messages
elif "function_call" not in message:
# fit updated_message to be within temp_message_tokens - max_tokens (aka the amount temp_message_tokens is greate than max_tokens)
updated_message = shorten_message_to_fit_limit(message, temp_message_tokens - max_tokens, model)
if can_add_message(updated_message, final_messages, max_tokens, model):
return [updated_message] + final_messages
return final_messages
def can_add_message(message, messages, max_tokens, model):
if get_token_count(messages + [message], model) <= max_tokens:
return True
return False
def get_token_count(messages, model):
return token_counter(model=model, messages=messages)
def shorten_message_to_fit_limit(
message,
tokens_needed,
model):
"""
Shorten a message to fit within a token limit by removing characters from the middle.
"""
content = message["content"]
while True:
total_tokens = get_token_count([message], model)
if total_tokens <= tokens_needed:
break
ratio = (tokens_needed) / total_tokens
new_length = int(len(content) * ratio)
print_verbose(new_length)
half_length = new_length // 2
left_half = content[:half_length]
right_half = content[-half_length:]
trimmed_content = left_half + '..' + right_half
message["content"] = trimmed_content
content = trimmed_content
return message
# LiteLLM token trimmer
# this code is borrowed from https://github.com/KillianLucas/tokentrim/blob/main/tokentrim/tokentrim.py
# Credits for this code go to Killian Lucas
def trim_messages(
messages,
model = None,
system_message = None, # str of user system message
trim_ratio: float = 0.75,
return_response_tokens: bool = False,
max_tokens = None
):
"""
Trim a list of messages to fit within a model's token limit.
Args:
messages: Input messages to be trimmed. Each message is a dictionary with 'role' and 'content'.
model: The LiteLLM model being used (determines the token limit).
system_message: Optional system message to preserve at the start of the conversation.
trim_ratio: Target ratio of tokens to use after trimming. Default is 0.75, meaning it will trim messages so they use about 75% of the model's token limit.
return_response_tokens: If True, also return the number of tokens left available for the response after trimming.
max_tokens: Instead of specifying a model or trim_ratio, you can specify this directly.
Returns:
Trimmed messages and optionally the number of tokens available for response.
"""
# Initialize max_tokens
# if users pass in max tokens, trim to this amount
try:
if max_tokens == None:
# Check if model is valid
if model in litellm.model_cost:
max_tokens_for_model = litellm.model_cost[model]['max_tokens']
max_tokens = int(max_tokens_for_model * trim_ratio)
else:
# if user did not specify max tokens
# or passed an llm litellm does not know
# do nothing, just return messages
return
current_tokens = token_counter(model=model, messages=messages)
# Do nothing if current tokens under messages
if current_tokens < max_tokens:
return messages
#### Trimming messages if current_tokens > max_tokens
print_verbose(f"Need to trim input messages: {messages}, current_tokens{current_tokens}, max_tokens: {max_tokens}")
if system_message:
system_message_event, max_tokens = process_system_message(system_message=system_message, max_tokens=max_tokens, model=model)
messages = messages + [system_message_event]
final_messages = process_messages(messages=messages, max_tokens=max_tokens, model=model)
if return_response_tokens: # if user wants token count with new trimmed messages
response_tokens = max_tokens - get_token_count(final_messages, model)
return final_messages, response_tokens
return final_messages
except: # [NON-Blocking, if error occurs just return final_messages
return messages
# this helper reads the .env and returns a list of supported llms for user
def get_valid_models():
try:
# get keys set in .env
environ_keys = os.environ.keys()
valid_providers = []
# for all valid providers, make a list of supported llms
valid_models = []
for provider in litellm.provider_list:
# edge case litellm has together_ai as a provider, it should be togetherai
provider = provider.replace("_", "")
# litellm standardizes expected provider keys to
# PROVIDER_API_KEY. Example: OPENAI_API_KEY, COHERE_API_KEY
expected_provider_key = f"{provider.upper()}_API_KEY"
if expected_provider_key in environ_keys:
# key is set
valid_providers.append(provider)
for provider in valid_providers:
if provider == "azure":
valid_models.append("Azure-LLM")
else:
models_for_provider = litellm.models_by_provider.get(provider, [])
valid_models.extend(models_for_provider)
return valid_models
except:
return [] # NON-Blocking