""" Base class across routing strategies to abstract commmon functions like batch incrementing redis """ import asyncio from abc import ABC from typing import List, Optional, Set, Union from litellm._logging import verbose_router_logger from litellm.caching.caching import DualCache from litellm.caching.redis_cache import RedisPipelineIncrementOperation from litellm.constants import DEFAULT_REDIS_SYNC_INTERVAL class BaseRoutingStrategy(ABC): def __init__( self, dual_cache: DualCache, should_batch_redis_writes: bool, default_sync_interval: Optional[Union[int, float]], ): self.dual_cache = dual_cache self.redis_increment_operation_queue: List[RedisPipelineIncrementOperation] = [] if should_batch_redis_writes: asyncio.create_task( self.periodic_sync_in_memory_spend_with_redis( default_sync_interval=default_sync_interval ) ) self.in_memory_keys_to_update: set[str] = ( set() ) # Set with max size of 1000 keys async def _increment_value_in_current_window( self, key: str, value: Union[int, float], ttl: int ): """ Increment spend within existing budget window Runs once the budget start time exists in Redis Cache (on the 2nd and subsequent requests to the same provider) - Increments the spend in memory cache (so spend instantly updated in memory) - Queues the increment operation to Redis Pipeline (using batched pipeline to optimize performance. Using Redis for multi instance environment of LiteLLM) """ result = await self.dual_cache.in_memory_cache.async_increment( key=key, value=value, ttl=ttl, ) increment_op = RedisPipelineIncrementOperation( key=key, increment_value=value, ttl=ttl, ) self.redis_increment_operation_queue.append(increment_op) self.add_to_cache_keys(key=key) return result async def periodic_sync_in_memory_spend_with_redis( self, default_sync_interval: Optional[Union[int, float]] ): """ Handler that triggers sync_in_memory_spend_with_redis every DEFAULT_REDIS_SYNC_INTERVAL seconds Required for multi-instance environment usage of provider budgets """ default_sync_interval = default_sync_interval or DEFAULT_REDIS_SYNC_INTERVAL while True: try: await self._sync_in_memory_spend_with_redis() await asyncio.sleep( default_sync_interval ) # Wait for DEFAULT_REDIS_SYNC_INTERVAL seconds before next sync except Exception as e: verbose_router_logger.error(f"Error in periodic sync task: {str(e)}") await asyncio.sleep( default_sync_interval ) # Still wait DEFAULT_REDIS_SYNC_INTERVAL seconds on error before retrying async def _push_in_memory_increments_to_redis(self): """ How this works: - async_log_success_event collects all provider spend increments in `redis_increment_operation_queue` - This function pushes all increments to Redis in a batched pipeline to optimize performance Only runs if Redis is initialized """ try: if not self.dual_cache.redis_cache: return # Redis is not initialized verbose_router_logger.debug( "Pushing Redis Increment Pipeline for queue: %s", self.redis_increment_operation_queue, ) if len(self.redis_increment_operation_queue) > 0: asyncio.create_task( self.dual_cache.redis_cache.async_increment_pipeline( increment_list=self.redis_increment_operation_queue, ) ) self.redis_increment_operation_queue = [] except Exception as e: verbose_router_logger.error( f"Error syncing in-memory cache with Redis: {str(e)}" ) def add_to_cache_keys(self, key: str): self.in_memory_keys_to_update.add(key) def get_cache_keys(self) -> Set[str]: return self.in_memory_keys_to_update def reset_cache_keys(self): self.in_memory_keys_to_update = set() async def _sync_in_memory_spend_with_redis(self): """ Ensures in-memory cache is updated with latest Redis values for all provider spends. Why Do we need this? - Optimization to hit sub 100ms latency. Performance was impacted when redis was used for read/write per request - Use provider budgets in multi-instance environment, we use Redis to sync spend across all instances What this does: 1. Push all provider spend increments to Redis 2. Fetch all current provider spend from Redis to update in-memory cache """ try: # No need to sync if Redis cache is not initialized if self.dual_cache.redis_cache is None: return # 1. Push all provider spend increments to Redis await self._push_in_memory_increments_to_redis() # 2. Fetch all current provider spend from Redis to update in-memory cache cache_keys = self.get_cache_keys() cache_keys_list = list(cache_keys) # Batch fetch current spend values from Redis redis_values = await self.dual_cache.redis_cache.async_batch_get_cache( key_list=cache_keys_list ) # Update in-memory cache with Redis values if isinstance(redis_values, dict): # Check if redis_values is a dictionary for key, value in redis_values.items(): if value is not None: await self.dual_cache.in_memory_cache.async_set_cache( key=key, value=float(value) ) verbose_router_logger.debug( f"Updated in-memory cache for {key}: {value}" ) self.reset_cache_keys() except Exception as e: verbose_router_logger.error( f"Error syncing in-memory cache with Redis: {str(e)}" )