import litellm from litellm import ModelResponse from proxy_server import llm_model_list from typing import Optional def track_cost_callback( kwargs, # kwargs to completion completion_response: ModelResponse, # response from completion start_time = None, end_time = None, # start/end time for completion ): try: # init logging config print("in custom callback tracking cost", llm_model_list) if "azure" in kwargs["model"]: # for azure cost tracking, we check the provided model list in the config.yaml # we need to map azure/chatgpt-deployment to -> azure/gpt-3.5-turbo pass # check if it has collected an entire stream response if "complete_streaming_response" in kwargs: # for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost completion_response=kwargs["complete_streaming_response"] input_text = kwargs["messages"] output_text = completion_response["choices"][0]["message"]["content"] response_cost = litellm.completion_cost( model = kwargs["model"], messages = input_text, completion=output_text ) print("streaming response_cost", response_cost) # for non streaming responses else: # we pass the completion_response obj if kwargs["stream"] != True: response_cost = litellm.completion_cost(completion_response=completion_response) print("regular response_cost", response_cost) except: pass