import json import os import time import traceback import types from enum import Enum from typing import Any, Callable, List, Optional import requests # type: ignore import litellm from litellm.utils import Choices, Message, ModelResponse, Usage class MaritalkError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message super().__init__( self.message ) # Call the base class constructor with the parameters it needs class MaritTalkConfig: """ The class `MaritTalkConfig` provides configuration for the MaritTalk's API interface. Here are the parameters: - `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default is 1. - `model` (string): The model used for conversation. Default is 'maritalk'. - `do_sample` (boolean): If set to True, the API will generate a response using sampling. Default is True. - `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.7. - `top_p` (number): Selection threshold for token inclusion based on cumulative probability. Default is 0.95. - `repetition_penalty` (number): Penalty for repetition in the generated conversation. Default is 1. - `stopping_tokens` (list of string): List of tokens where the conversation can be stopped/stopped. """ max_tokens: Optional[int] = None model: Optional[str] = None do_sample: Optional[bool] = None temperature: Optional[float] = None top_p: Optional[float] = None repetition_penalty: Optional[float] = None stopping_tokens: Optional[List[str]] = None def __init__( self, max_tokens: Optional[int] = None, model: Optional[str] = None, do_sample: Optional[bool] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, repetition_penalty: Optional[float] = None, stopping_tokens: Optional[List[str]] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return { k: v for k, v in cls.__dict__.items() if not k.startswith("__") and not isinstance( v, ( types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod, ), ) and v is not None } def validate_environment(api_key): headers = { "accept": "application/json", "content-type": "application/json", } if api_key: headers["Authorization"] = f"Key {api_key}" return headers def completion( model: str, messages: list, api_base: str, model_response: ModelResponse, print_verbose: Callable, encoding, api_key, logging_obj, optional_params: dict, litellm_params=None, logger_fn=None, ): headers = validate_environment(api_key) completion_url = api_base model = model ## Load Config config = litellm.MaritTalkConfig.get_config() for k, v in config.items(): if ( k not in optional_params ): # completion(top_k=3) > maritalk_config(top_k=3) <- allows for dynamic variables to be passed in optional_params[k] = v data = { "messages": messages, **optional_params, } ## LOGGING logging_obj.pre_call( input=messages, api_key=api_key, additional_args={"complete_input_dict": data}, ) ## COMPLETION CALL response = requests.post( completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False, ) if "stream" in optional_params and optional_params["stream"] is True: return response.iter_lines() else: ## LOGGING logging_obj.post_call( input=messages, api_key=api_key, original_response=response.text, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response.text}") ## RESPONSE OBJECT completion_response = response.json() if "error" in completion_response: raise MaritalkError( message=completion_response["error"], status_code=response.status_code, ) else: try: if len(completion_response["answer"]) > 0: model_response.choices[0].message.content = completion_response[ # type: ignore "answer" ] except Exception: raise MaritalkError( message=response.text, status_code=response.status_code ) ## CALCULATING USAGE prompt = "".join(m["content"] for m in messages) prompt_tokens = len(encoding.encode(prompt)) completion_tokens = len( encoding.encode(model_response["choices"][0]["message"].get("content", "")) ) model_response.created = int(time.time()) model_response.model = model usage = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, ) setattr(model_response, "usage", usage) return model_response def embedding( model: str, input: list, api_key: Optional[str], logging_obj: Any, model_response=None, encoding=None, ): pass