mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
700 lines
26 KiB
Python
700 lines
26 KiB
Python
#### What this tests ####
|
|
# This tests calling router with fallback models
|
|
|
|
import sys, os, time
|
|
import traceback, asyncio
|
|
import pytest
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
|
|
import litellm
|
|
from litellm import Router
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
|
|
|
|
class MyCustomHandler(CustomLogger):
|
|
success: bool = False
|
|
failure: bool = False
|
|
previous_models: int = 0
|
|
|
|
def log_pre_api_call(self, model, messages, kwargs):
|
|
print(f"Pre-API Call")
|
|
print(
|
|
f"previous_models: {kwargs['litellm_params']['metadata']['previous_models']}"
|
|
)
|
|
self.previous_models += len(
|
|
kwargs["litellm_params"]["metadata"]["previous_models"]
|
|
) # {"previous_models": [{"model": litellm_model_name, "exception_type": AuthenticationError, "exception_string": <complete_traceback>}]}
|
|
print(f"self.previous_models: {self.previous_models}")
|
|
|
|
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
|
|
print(
|
|
f"Post-API Call - response object: {response_obj}; model: {kwargs['model']}"
|
|
)
|
|
|
|
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Stream")
|
|
|
|
def async_log_stream_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Stream")
|
|
|
|
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Success")
|
|
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Success")
|
|
|
|
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Failure")
|
|
|
|
|
|
kwargs = {
|
|
"model": "azure/gpt-3.5-turbo",
|
|
"messages": [{"role": "user", "content": "Hey, how's it going?"}],
|
|
}
|
|
|
|
|
|
def test_sync_fallbacks():
|
|
try:
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo-16k",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
]
|
|
|
|
litellm.set_verbose = True
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
|
|
context_window_fallbacks=[
|
|
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
|
|
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
|
|
],
|
|
set_verbose=False,
|
|
)
|
|
response = router.completion(**kwargs)
|
|
print(f"response: {response}")
|
|
time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
|
|
|
|
print("Passed ! Test router_fallbacks: test_sync_fallbacks()")
|
|
router.reset()
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
# test_sync_fallbacks()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_fallbacks():
|
|
litellm.set_verbose = False
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo-16k",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
]
|
|
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
|
|
context_window_fallbacks=[
|
|
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
|
|
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
|
|
],
|
|
set_verbose=False,
|
|
)
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
user_message = "Hello, how are you?"
|
|
messages = [{"content": user_message, "role": "user"}]
|
|
try:
|
|
response = await router.acompletion(**kwargs)
|
|
print(f"customHandler.previous_models: {customHandler.previous_models}")
|
|
await asyncio.sleep(
|
|
0.05
|
|
) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
|
|
router.reset()
|
|
except litellm.Timeout as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred: {e}")
|
|
finally:
|
|
router.reset()
|
|
|
|
|
|
# test_async_fallbacks()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_fallbacks_embeddings():
|
|
litellm.set_verbose = False
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "bad-azure-embedding-model", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/azure-embedding-model",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "good-azure-embedding-model", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/azure-embedding-model",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
]
|
|
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=[{"bad-azure-embedding-model": ["good-azure-embedding-model"]}],
|
|
set_verbose=False,
|
|
)
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
user_message = "Hello, how are you?"
|
|
input = [user_message]
|
|
try:
|
|
kwargs = {"model": "bad-azure-embedding-model", "input": input}
|
|
response = await router.aembedding(**kwargs)
|
|
print(f"customHandler.previous_models: {customHandler.previous_models}")
|
|
await asyncio.sleep(
|
|
0.05
|
|
) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
|
|
router.reset()
|
|
except litellm.Timeout as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred: {e}")
|
|
finally:
|
|
router.reset()
|
|
|
|
|
|
def test_dynamic_fallbacks_sync():
|
|
"""
|
|
Allow setting the fallback in the router.completion() call.
|
|
"""
|
|
try:
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo-16k",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
]
|
|
|
|
router = Router(model_list=model_list, set_verbose=True)
|
|
kwargs = {}
|
|
kwargs["model"] = "azure/gpt-3.5-turbo"
|
|
kwargs["messages"] = [{"role": "user", "content": "Hey, how's it going?"}]
|
|
kwargs["fallbacks"] = [{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}]
|
|
response = router.completion(**kwargs)
|
|
print(f"response: {response}")
|
|
time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
|
|
router.reset()
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred - {e}")
|
|
|
|
|
|
# test_dynamic_fallbacks_sync()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_dynamic_fallbacks_async():
|
|
"""
|
|
Allow setting the fallback in the router.completion() call.
|
|
"""
|
|
try:
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo-16k",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
]
|
|
|
|
print()
|
|
print()
|
|
print()
|
|
print()
|
|
print(f"STARTING DYNAMIC ASYNC")
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
router = Router(model_list=model_list, set_verbose=True)
|
|
kwargs = {}
|
|
kwargs["model"] = "azure/gpt-3.5-turbo"
|
|
kwargs["messages"] = [{"role": "user", "content": "Hey, how's it going?"}]
|
|
kwargs["fallbacks"] = [{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}]
|
|
response = await router.acompletion(**kwargs)
|
|
print(f"RESPONSE: {response}")
|
|
await asyncio.sleep(
|
|
0.05
|
|
) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
|
|
router.reset()
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred - {e}")
|
|
|
|
|
|
# asyncio.run(test_dynamic_fallbacks_async())
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_fallbacks_streaming():
|
|
litellm.set_verbose = False
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo-16k",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
]
|
|
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
|
|
context_window_fallbacks=[
|
|
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
|
|
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
|
|
],
|
|
set_verbose=False,
|
|
)
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
user_message = "Hello, how are you?"
|
|
messages = [{"content": user_message, "role": "user"}]
|
|
try:
|
|
response = await router.acompletion(**kwargs, stream=True)
|
|
print(f"customHandler.previous_models: {customHandler.previous_models}")
|
|
await asyncio.sleep(
|
|
0.05
|
|
) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
|
|
router.reset()
|
|
except litellm.Timeout as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred: {e}")
|
|
finally:
|
|
router.reset()
|
|
|
|
|
|
def test_sync_fallbacks_streaming():
|
|
try:
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo-16k",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
]
|
|
|
|
litellm.set_verbose = True
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
|
|
context_window_fallbacks=[
|
|
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
|
|
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
|
|
],
|
|
set_verbose=False,
|
|
)
|
|
response = router.completion(**kwargs, stream=True)
|
|
print(f"response: {response}")
|
|
time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
|
|
|
|
print("Passed ! Test router_fallbacks: test_sync_fallbacks()")
|
|
router.reset()
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_fallbacks_max_retries_per_request():
|
|
litellm.set_verbose = False
|
|
litellm.num_retries_per_request = 0
|
|
model_list = [
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{ # list of model deployments
|
|
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "azure/gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo-16k", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo-16k",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000,
|
|
},
|
|
]
|
|
|
|
router = Router(
|
|
model_list=model_list,
|
|
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
|
|
context_window_fallbacks=[
|
|
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
|
|
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
|
|
],
|
|
set_verbose=False,
|
|
)
|
|
customHandler = MyCustomHandler()
|
|
litellm.callbacks = [customHandler]
|
|
user_message = "Hello, how are you?"
|
|
messages = [{"content": user_message, "role": "user"}]
|
|
try:
|
|
try:
|
|
response = await router.acompletion(**kwargs, stream=True)
|
|
except:
|
|
pass
|
|
print(f"customHandler.previous_models: {customHandler.previous_models}")
|
|
await asyncio.sleep(
|
|
0.05
|
|
) # allow a delay as success_callbacks are on a separate thread
|
|
assert customHandler.previous_models == 0 # 0 retries, 0 fallback
|
|
router.reset()
|
|
except litellm.Timeout as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred: {e}")
|
|
finally:
|
|
router.reset()
|