mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* build(pyproject.toml): add new dev dependencies - for type checking * build: reformat files to fit black * ci: reformat to fit black * ci(test-litellm.yml): make tests run clear * build(pyproject.toml): add ruff * fix: fix ruff checks * build(mypy/): fix mypy linting errors * fix(hashicorp_secret_manager.py): fix passing cert for tls auth * build(mypy/): resolve all mypy errors * test: update test * fix: fix black formatting * build(pre-commit-config.yaml): use poetry run black * fix(proxy_server.py): fix linting error * fix: fix ruff safe representation error
335 lines
13 KiB
Python
335 lines
13 KiB
Python
import asyncio
|
|
import contextvars
|
|
from functools import partial
|
|
from typing import Any, Coroutine, Dict, List, Literal, Optional, Union
|
|
|
|
import litellm
|
|
from litellm._logging import verbose_logger
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
|
from litellm.llms.base_llm.rerank.transformation import BaseRerankConfig
|
|
from litellm.llms.bedrock.rerank.handler import BedrockRerankHandler
|
|
from litellm.llms.custom_httpx.llm_http_handler import BaseLLMHTTPHandler
|
|
from litellm.llms.together_ai.rerank.handler import TogetherAIRerank
|
|
from litellm.rerank_api.rerank_utils import get_optional_rerank_params
|
|
from litellm.secret_managers.main import get_secret, get_secret_str
|
|
from litellm.types.rerank import OptionalRerankParams, RerankResponse
|
|
from litellm.types.router import *
|
|
from litellm.utils import ProviderConfigManager, client, exception_type
|
|
|
|
####### ENVIRONMENT VARIABLES ###################
|
|
# Initialize any necessary instances or variables here
|
|
together_rerank = TogetherAIRerank()
|
|
bedrock_rerank = BedrockRerankHandler()
|
|
base_llm_http_handler = BaseLLMHTTPHandler()
|
|
#################################################
|
|
|
|
|
|
@client
|
|
async def arerank(
|
|
model: str,
|
|
query: str,
|
|
documents: List[Union[str, Dict[str, Any]]],
|
|
custom_llm_provider: Optional[Literal["cohere", "together_ai"]] = None,
|
|
top_n: Optional[int] = None,
|
|
rank_fields: Optional[List[str]] = None,
|
|
return_documents: Optional[bool] = None,
|
|
max_chunks_per_doc: Optional[int] = None,
|
|
**kwargs,
|
|
) -> Union[RerankResponse, Coroutine[Any, Any, RerankResponse]]:
|
|
"""
|
|
Async: Reranks a list of documents based on their relevance to the query
|
|
"""
|
|
try:
|
|
loop = asyncio.get_event_loop()
|
|
kwargs["arerank"] = True
|
|
|
|
func = partial(
|
|
rerank,
|
|
model,
|
|
query,
|
|
documents,
|
|
custom_llm_provider,
|
|
top_n,
|
|
rank_fields,
|
|
return_documents,
|
|
max_chunks_per_doc,
|
|
**kwargs,
|
|
)
|
|
|
|
ctx = contextvars.copy_context()
|
|
func_with_context = partial(ctx.run, func)
|
|
init_response = await loop.run_in_executor(None, func_with_context)
|
|
|
|
if asyncio.iscoroutine(init_response):
|
|
response = await init_response
|
|
else:
|
|
response = init_response
|
|
return response
|
|
except Exception as e:
|
|
raise e
|
|
|
|
|
|
@client
|
|
def rerank( # noqa: PLR0915
|
|
model: str,
|
|
query: str,
|
|
documents: List[Union[str, Dict[str, Any]]],
|
|
custom_llm_provider: Optional[
|
|
Literal["cohere", "together_ai", "azure_ai", "infinity", "litellm_proxy"]
|
|
] = None,
|
|
top_n: Optional[int] = None,
|
|
rank_fields: Optional[List[str]] = None,
|
|
return_documents: Optional[bool] = True,
|
|
max_chunks_per_doc: Optional[int] = None,
|
|
max_tokens_per_doc: Optional[int] = None,
|
|
**kwargs,
|
|
) -> Union[RerankResponse, Coroutine[Any, Any, RerankResponse]]:
|
|
"""
|
|
Reranks a list of documents based on their relevance to the query
|
|
"""
|
|
headers: Optional[dict] = kwargs.get("headers") # type: ignore
|
|
litellm_logging_obj: LiteLLMLoggingObj = kwargs.get("litellm_logging_obj") # type: ignore
|
|
litellm_call_id: Optional[str] = kwargs.get("litellm_call_id", None)
|
|
proxy_server_request = kwargs.get("proxy_server_request", None)
|
|
model_info = kwargs.get("model_info", None)
|
|
metadata = kwargs.get("metadata", {})
|
|
user = kwargs.get("user", None)
|
|
client = kwargs.get("client", None)
|
|
try:
|
|
_is_async = kwargs.pop("arerank", False) is True
|
|
optional_params = GenericLiteLLMParams(**kwargs)
|
|
# Params that are unique to specific versions of the client for the rerank call
|
|
unique_version_params = {
|
|
"max_chunks_per_doc": max_chunks_per_doc,
|
|
"max_tokens_per_doc": max_tokens_per_doc,
|
|
}
|
|
present_version_params = [
|
|
k for k, v in unique_version_params.items() if v is not None
|
|
]
|
|
|
|
(
|
|
model,
|
|
_custom_llm_provider,
|
|
dynamic_api_key,
|
|
dynamic_api_base,
|
|
) = litellm.get_llm_provider(
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
api_base=optional_params.api_base,
|
|
api_key=optional_params.api_key,
|
|
)
|
|
|
|
rerank_provider_config: BaseRerankConfig = (
|
|
ProviderConfigManager.get_provider_rerank_config(
|
|
model=model,
|
|
provider=litellm.LlmProviders(_custom_llm_provider),
|
|
api_base=optional_params.api_base,
|
|
present_version_params=present_version_params,
|
|
)
|
|
)
|
|
|
|
optional_rerank_params: OptionalRerankParams = get_optional_rerank_params(
|
|
rerank_provider_config=rerank_provider_config,
|
|
model=model,
|
|
drop_params=kwargs.get("drop_params") or litellm.drop_params or False,
|
|
query=query,
|
|
documents=documents,
|
|
custom_llm_provider=_custom_llm_provider,
|
|
top_n=top_n,
|
|
rank_fields=rank_fields,
|
|
return_documents=return_documents,
|
|
max_chunks_per_doc=max_chunks_per_doc,
|
|
max_tokens_per_doc=max_tokens_per_doc,
|
|
non_default_params=kwargs,
|
|
)
|
|
|
|
if isinstance(optional_params.timeout, str):
|
|
optional_params.timeout = float(optional_params.timeout)
|
|
|
|
model_response = RerankResponse()
|
|
|
|
litellm_logging_obj.update_environment_variables(
|
|
model=model,
|
|
user=user,
|
|
optional_params=dict(optional_rerank_params),
|
|
litellm_params={
|
|
"litellm_call_id": litellm_call_id,
|
|
"proxy_server_request": proxy_server_request,
|
|
"model_info": model_info,
|
|
"metadata": metadata,
|
|
"preset_cache_key": None,
|
|
"stream_response": {},
|
|
**optional_params.model_dump(exclude_unset=True),
|
|
},
|
|
custom_llm_provider=_custom_llm_provider,
|
|
)
|
|
|
|
# Implement rerank logic here based on the custom_llm_provider
|
|
if _custom_llm_provider == "cohere" or _custom_llm_provider == "litellm_proxy":
|
|
# Implement Cohere rerank logic
|
|
api_key: Optional[str] = (
|
|
dynamic_api_key or optional_params.api_key or litellm.api_key
|
|
)
|
|
|
|
api_base: Optional[str] = (
|
|
dynamic_api_base
|
|
or optional_params.api_base
|
|
or litellm.api_base
|
|
or get_secret("COHERE_API_BASE") # type: ignore
|
|
or "https://api.cohere.com"
|
|
)
|
|
|
|
if api_base is None:
|
|
raise Exception(
|
|
"Invalid api base. api_base=None. Set in call or via `COHERE_API_BASE` env var."
|
|
)
|
|
response = base_llm_http_handler.rerank(
|
|
model=model,
|
|
custom_llm_provider=_custom_llm_provider,
|
|
provider_config=rerank_provider_config,
|
|
optional_rerank_params=optional_rerank_params,
|
|
logging_obj=litellm_logging_obj,
|
|
timeout=optional_params.timeout,
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
_is_async=_is_async,
|
|
headers=headers or litellm.headers or {},
|
|
client=client,
|
|
model_response=model_response,
|
|
)
|
|
elif _custom_llm_provider == "azure_ai":
|
|
api_base = (
|
|
dynamic_api_base # for deepinfra/perplexity/anyscale/groq/friendliai we check in get_llm_provider and pass in the api base from there
|
|
or optional_params.api_base
|
|
or litellm.api_base
|
|
or get_secret("AZURE_AI_API_BASE") # type: ignore
|
|
)
|
|
response = base_llm_http_handler.rerank(
|
|
model=model,
|
|
custom_llm_provider=_custom_llm_provider,
|
|
optional_rerank_params=optional_rerank_params,
|
|
provider_config=rerank_provider_config,
|
|
logging_obj=litellm_logging_obj,
|
|
timeout=optional_params.timeout,
|
|
api_key=dynamic_api_key or optional_params.api_key,
|
|
api_base=api_base,
|
|
_is_async=_is_async,
|
|
headers=headers or litellm.headers or {},
|
|
client=client,
|
|
model_response=model_response,
|
|
)
|
|
elif _custom_llm_provider == "infinity":
|
|
# Implement Infinity rerank logic
|
|
api_key = dynamic_api_key or optional_params.api_key or litellm.api_key
|
|
|
|
api_base = (
|
|
dynamic_api_base
|
|
or optional_params.api_base
|
|
or litellm.api_base
|
|
or get_secret_str("INFINITY_API_BASE")
|
|
)
|
|
|
|
if api_base is None:
|
|
raise Exception(
|
|
"Invalid api base. api_base=None. Set in call or via `INFINITY_API_BASE` env var."
|
|
)
|
|
|
|
response = base_llm_http_handler.rerank(
|
|
model=model,
|
|
custom_llm_provider=_custom_llm_provider,
|
|
provider_config=rerank_provider_config,
|
|
optional_rerank_params=optional_rerank_params,
|
|
logging_obj=litellm_logging_obj,
|
|
timeout=optional_params.timeout,
|
|
api_key=dynamic_api_key or optional_params.api_key,
|
|
api_base=api_base,
|
|
_is_async=_is_async,
|
|
headers=headers or litellm.headers or {},
|
|
client=client,
|
|
model_response=model_response,
|
|
)
|
|
elif _custom_llm_provider == "together_ai":
|
|
# Implement Together AI rerank logic
|
|
api_key = (
|
|
dynamic_api_key
|
|
or optional_params.api_key
|
|
or litellm.togetherai_api_key
|
|
or get_secret("TOGETHERAI_API_KEY") # type: ignore
|
|
or litellm.api_key
|
|
)
|
|
|
|
if api_key is None:
|
|
raise ValueError(
|
|
"TogetherAI API key is required, please set 'TOGETHERAI_API_KEY' in your environment"
|
|
)
|
|
|
|
response = together_rerank.rerank(
|
|
model=model,
|
|
query=query,
|
|
documents=documents,
|
|
top_n=top_n,
|
|
rank_fields=rank_fields,
|
|
return_documents=return_documents,
|
|
max_chunks_per_doc=max_chunks_per_doc,
|
|
api_key=api_key,
|
|
_is_async=_is_async,
|
|
)
|
|
elif _custom_llm_provider == "jina_ai":
|
|
if dynamic_api_key is None:
|
|
raise ValueError(
|
|
"Jina AI API key is required, please set 'JINA_AI_API_KEY' in your environment"
|
|
)
|
|
|
|
api_base = (
|
|
dynamic_api_base
|
|
or optional_params.api_base
|
|
or litellm.api_base
|
|
or get_secret("BEDROCK_API_BASE") # type: ignore
|
|
)
|
|
|
|
response = base_llm_http_handler.rerank(
|
|
model=model,
|
|
custom_llm_provider=_custom_llm_provider,
|
|
optional_rerank_params=optional_rerank_params,
|
|
logging_obj=litellm_logging_obj,
|
|
provider_config=rerank_provider_config,
|
|
timeout=optional_params.timeout,
|
|
api_key=dynamic_api_key or optional_params.api_key,
|
|
api_base=api_base,
|
|
_is_async=_is_async,
|
|
headers=headers or litellm.headers or {},
|
|
client=client,
|
|
model_response=model_response,
|
|
)
|
|
elif _custom_llm_provider == "bedrock":
|
|
api_base = (
|
|
dynamic_api_base
|
|
or optional_params.api_base
|
|
or litellm.api_base
|
|
or get_secret("BEDROCK_API_BASE") # type: ignore
|
|
)
|
|
|
|
response = bedrock_rerank.rerank(
|
|
model=model,
|
|
query=query,
|
|
documents=documents,
|
|
top_n=top_n,
|
|
rank_fields=rank_fields,
|
|
return_documents=return_documents,
|
|
max_chunks_per_doc=max_chunks_per_doc,
|
|
_is_async=_is_async,
|
|
optional_params=optional_params.model_dump(exclude_unset=True),
|
|
api_base=api_base,
|
|
logging_obj=litellm_logging_obj,
|
|
client=client,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported provider: {_custom_llm_provider}")
|
|
|
|
# Placeholder return
|
|
return response
|
|
except Exception as e:
|
|
verbose_logger.error(f"Error in rerank: {str(e)}")
|
|
raise exception_type(
|
|
model=model, custom_llm_provider=custom_llm_provider, original_exception=e
|
|
)
|